1.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2x10=20
y=2x15=30
z=2x21=42
2.
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=-\frac{9}{2}\)
=> x=\(-\frac{9}{2}x1=-\frac{9}{2}\)
y=\(-\frac{9}{2}x2=-9\)
z=\(-\frac{9}{2}x3=-\frac{27}{2}\)
3. \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}\)
=> x=95/19x15=....
y=95/19x10=...
z=96/19x6=...