Lê Thanh Quang

1) Với x, y, z là các số thực thỏa mãn xy + yz + zx = 13, chứng minh rằng \(21x^2+21y^2+z^2\ge78\)

2) Cho các số thực x, y, z khác 0 thỏa mãn x + y + z = 3xyz, chứng minh rằng\(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

3) Với a, b, c là các số thực dương thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất của P = a3 + 64b3 + c3

Nguyễn Linh Chi
10 tháng 6 2020 lúc 18:22

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Linh Chi
10 tháng 6 2020 lúc 18:31

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Trường Lân
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết
nguyen thi mai chinh
Xem chi tiết
CR7 kathy
Xem chi tiết
Hoàng nhật Giang
Xem chi tiết
Đỗ Xuân Tuấn Minh
Xem chi tiết
Minh Triều
Xem chi tiết
Lê Thanh Quang
Xem chi tiết
Vũ quang tùng
Xem chi tiết