Đặt \(A=\left|x-y\right|+\left|y+\frac{9}{25}\right|\)
\(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|y+\frac{9}{25}\right|\ge0\forall x;y\end{cases}\Rightarrow A=\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x;y}\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|y+\frac{9}{25}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y=-\frac{9}{25}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\y=-\frac{9}{25}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{9}{25}\\y=-\frac{9}{25}\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=-\frac{9}{25}\\y=-\frac{9}{25}\end{cases}}\)
\(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-y\right|=0\forall x;y\\\left|y+\frac{9}{25}\right|=0\forall y\end{cases}\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x;y}\)
Mà \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|y+\frac{9}{25}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\y=-\frac{9}{25}\end{cases}\Rightarrow}x=y=-\frac{9}{25}}\)
Vậy \(x=y=-\frac{9}{25}\)