a,A=\(2\frac{1}{2}:\left(\frac{-1}{2}\right)^2-\frac{1}{-3}.\left(\frac{-1}{2}-\frac{4}{3}:\frac{-8}{9}\right)\)
b,B=\(\left(3\frac{10}{99}+4\frac{11}{99}-\frac{58}{299}\right).\left(\frac{1}{2}-\frac{4}{3}-\frac{1}{6}\right)\)
So sánh:
a) \(\frac{-3}{1.3}+\frac{-3}{3.5}+...+\frac{-3}{97.99}\)và \(\frac{49}{-20}\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}và\frac{99}{202}\)
c)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}và\frac{99}{100}\)
So sánh A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{98^2}+\frac{1}{99^2}\) và B=\(\frac{304}{1975}\)
Bài toán : So sánh A với \(\frac{1}{3}\)
\(A=\frac{1}{3^1}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
so sánh hai số:A=1 và B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{99^2}+\frac{1}{100^2}\)
1:
a) Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) . So sánh A và \(\frac{199}{100}\)
b) Tìm tích: \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.\frac{24}{5^2}.....\frac{99}{10^2}\)
Cho
\(S=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^{ }3}-\frac{4}{3^{ }4}+...+\frac{99}{3^{ }99}-\frac{100}{3^{ }100}\)
So sánh S và \(\frac{1}{5}\)
B=\(1+\)\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{299}\) So Sánh B va 50
So sánh:
C = \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)và D = \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)