Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng nhật Giang

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

Thợ Đào Mỏ Padda
16 tháng 8 2017 lúc 9:46

SORY I'M I GRADE 6

Lý hải Dương
3 tháng 5 2018 lúc 9:24

????????

Nguyễn Khang
19 tháng 5 2020 lúc 19:31

mày hỏi vả bài kiểm tra à thằng điên 

Khách vãng lai đã xóa
阮广明(中国人)
8 tháng 5 2022 lúc 6:40

dài thế


Các câu hỏi tương tự
Nguyễn bảo ngoc
Xem chi tiết
Ngô Minh Tâm
Xem chi tiết
Bảo Thiii
Xem chi tiết
Lê Thanh Quang
Xem chi tiết
Vuong Ngoc Nguyen Ha (Ga...
Xem chi tiết
Nguyễn Lê Phương Thảo
Xem chi tiết
Đoàn Thanh Bảo An
Xem chi tiết
bumby nhi
Xem chi tiết
Phạm Ngọc Trà Thanh
Xem chi tiết