I love G Friend

1. Hãy tính tổng:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

2. Chứng minh:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\)

Nguyễn Hữu Huy
13 tháng 3 2016 lúc 10:25

1 : dễ mà 

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

1 phần 1 - 1 phần 2 = 1 phần 1.2 mà tương tự như thế đó

=> 1 - 1 phần n+1 

đS

Nguyễn Hưng Phát
13 tháng 3 2016 lúc 10:38

\(\frac{1}{1.2}+\frac{1}{2.3}+..........+\frac{1}{n.\left(n+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

\(=\frac{n}{n+1}\)

Bài 2:Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};.................;\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{\left(n-1\right).n}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{n-1}-\frac{1}{n}\)

=\(1-\frac{1}{n}<1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{n^2}<1\)


Các câu hỏi tương tự
I love G Friend
Xem chi tiết
Phi Hùng
Xem chi tiết
Trần Tuyết Nhi
Xem chi tiết
nguyễn thị oanh
Xem chi tiết
tiểu kiếm
Xem chi tiết
Phạm Minh Nhi
Xem chi tiết
Trần Tử Long
Xem chi tiết
Hoang Duc Thinh
Xem chi tiết
Lê Đan Huyền
Xem chi tiết