GPT: 9x/(2x2 + x + 3) - x/(2x2 - x - 3) = 8
Tìm các số nguyên x,y thỏa mãn: x2 + 2xy + 7(x+y) + 2y2 + 10= 0
Với x,y thỏa mãn \(3x^2+y^2+2x-2y=0\) hãy tìm các giá trị nguyên dương của biểu thức A
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
Bài 1: Cho biểu thức:
\(P=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}+\frac{5x+2}{4-x^2}\right):\frac{3x-x^2}{x^2+4x+4}\)
a, Rút gọn biểu thức P
b, tìm x để |P|= 2
c, Tìm giá trị nguyên của x để P nhận giá trị là số nguyên
Bài 2:
a, Phân tích đa thức sau thành nhân tử:
\(\left(x+2\right)\left(2x^2-5x\right)-x^3-8\)
b, Cho x, y, z là các số nguyên khác 0 đôi một khác nhau thỏa mãn:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị của biểu thức:
\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bài 3:Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(y\left(x-1\right)=x^2+2\)
1) Tìm x,y nguyên dương:
\(x^2-y^2+2x-4y-10=0\)
2) Tìm các số nguyên x,y thỏa mãn:
\(x^3+2x^2+3x+2=y^3\)
3) Giải phương trình nguyên sau:
a) \(2x+5y+3xy=8\)
b) \(xy-y-x=2\)
c) \(xy-2y-3x+x^2=3\)
d) \(x^2-xy=6x-5y-8\)
Câu 1. Giải phương trình: \(\left(x^2+x+1\right)\left(x^4+2x^3+7x^2+26x+37\right)=5\left(x+3\right)^3\)
Câu 2. Cho a, b, c là ba nghiệm của đa thức \(f\left(x\right)=x^3-3x+1\). Tính giá trị của biểu thức \(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)
Câu 3. a) Tìm số tự nhiên n sao cho \(\left(n^2-8\right)^2+36\)là số nguyên tố
b) Tìm số nguyên x, y thỏa mãn \(x^2y^2-x^2-8y^2=2xy\)
Tìm các cặp số nguyên (x; y) thỏa mãn phương trình: \(2x^2+2y^2 -2xy+y+x-10=0\)
1. cho x,y là các số dương thỏa mãn x + y < (h) = 1 .Tìm giá trị nhỏ nhất của biểu thức : A= \(\frac{1}{x^3+3xy^2}\)+\(\frac{1}{y^3+3x^2y}\)
2. a phân tích thành nhân tử (x+y)^2-(x+y)-6
b tìm các cặp giá trị (x;y) nguyên thỏa mãn phương trình sau:
2x^2 -x(2y-1)=y+12
Cho biểu thức \(A=\frac{4xy}{x^2-y^2}:\left(\frac{1}{x^2-y^2}+\frac{1}{x^2+2xy+y^2}\right)\). Nếu x,y là các số thực thỏa mãn \(x^2+3y^2+2x-2y=1\). Tìm các giá trị nguyên dương của A.
a)Giải phương trình:\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)0
b)Tìm nghiệm nguyên của phương trình: \(2x^2+3xy-2y^2=7.\)