http://www.cut-the-knot.org/Generalization/inequality.shtml
http://www.cut-the-knot.org/Generalization/inequality.shtml
Chứng minh rằng: \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{\left(2n-1\right)}{2n}\le\frac{1}{\sqrt{3n+1}}\) ( n là số nguyên dương)
CMR: với số nguyên dương \(n\ge2\) ta có \(\frac{2n+1}{3n+2}< \frac{1}{2n+2}+\frac{1}{2n+3}+...+\frac{1}{4n+2}< \frac{3n+2}{4\left(n+1\right)}\)
CMR: với mọi số nguyên dương \(n\ge2\) ta có \(\frac{2n+1}{3n+2}< \frac{1}{2n+2}+\frac{1}{2n+3}+...+\frac{1}{4n+2}< \frac{3n+2}{4\left(n+1\right)}\)
Chứng minh :
\(\frac{2n-1}{2n}\le\sqrt{\frac{3n-2}{3n+1}}\). Suy ra : \(\frac{1}{2}\times\frac{3}{4}\times...\times\frac{2n-1}{2n}\le\frac{1}{\sqrt{3n+1}}\)
\(\sin^3\frac{x}{3}+3\sin^3\frac{x}{3^2}+...+3^{n-1}\sin^3\frac{x}{3}=\frac{1}{4}\left(3^n\sin^3\frac{x}{3^n}-\sin x\right)\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n+1}{2n+2}<\frac{1}{\sqrt{3n+4}}\left(n\ge1\right)\)\(\left(n!\right)^2\ge n^2\ge\left(n+1\right)^{n-1}cho\left(n\ge1\right)\)Chứng minh: \(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)\(< \frac{1}{2}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...........\frac{2n-1}{2n}\)\(n\in N,n\ge2\)
C/m A<\(\frac{1}{\sqrt{3n+1}}\)
a/Chứng minh rằng \(\frac{2}{\left(2n+1\right)\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b/Áp dụng chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{4003\left(\sqrt{2001}+\sqrt{2002}\right)}<\frac{2001}{2003}\)
CM các biểu thức sau là một số nguyên:
a/\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
b/\(\left(\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\right)^2\)