Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Hữu Nam chuyên Đại...

1 CMR

a) mn(m2-n2) chia hết cho 3

b) n(n+1)(2n+1) chia hết cho 6

๖²⁴ʱƘ-ƔℌŤ༉
30 tháng 8 2019 lúc 11:27

a) \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]\)

\(=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)

\(=\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m\)

Vì tích 3 số nguyên liên tiếp luôn chia hết cho 3 nên \(\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)⋮3\\\left(n-1\right)n\left(n+1\right)⋮3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)n⋮3\\\left(n-1\right)n\left(n+1\right)m⋮3\end{cases}}\)

\(\Rightarrow\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m⋮3\)

Vậy \(mn\left(m^2-n^2\right)⋮3\left(đpcm\right)\)

๖²⁴ʱƘ-ƔℌŤ༉
30 tháng 8 2019 lúc 11:31

b) \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left(n+2+n-1\right)\)

\(=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)

Vì tích 3 số nguyên liên tiếp thì chia hết cho 3 và có ít nhất 1 số chẵn nên chia hết cho 6

\(\Rightarrow\hept{\begin{cases}n\left(n+1\right)\left(n+2\right)⋮6\\\left(n-1\right)n\left(n+1\right)⋮6\end{cases}}\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\left(đpcm\right)\)


Các câu hỏi tương tự
chudung133
Xem chi tiết
Trần Quang Luân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Mi Mi
Xem chi tiết
Nguyễn Lan Chi
Xem chi tiết
Min min
Xem chi tiết
Nguyễn Lan Chi
Xem chi tiết