a) \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]\)
\(=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)
\(=\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m\)
Vì tích 3 số nguyên liên tiếp luôn chia hết cho 3 nên \(\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)⋮3\\\left(n-1\right)n\left(n+1\right)⋮3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)n⋮3\\\left(n-1\right)n\left(n+1\right)m⋮3\end{cases}}\)
\(\Rightarrow\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m⋮3\)
Vậy \(mn\left(m^2-n^2\right)⋮3\left(đpcm\right)\)
b) \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left(n+2+n-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)
Vì tích 3 số nguyên liên tiếp thì chia hết cho 3 và có ít nhất 1 số chẵn nên chia hết cho 6
\(\Rightarrow\hept{\begin{cases}n\left(n+1\right)\left(n+2\right)⋮6\\\left(n-1\right)n\left(n+1\right)⋮6\end{cases}}\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\left(đpcm\right)\)