Cho tam giác ABC nhọn (AB < AC) có đường cao AH. Vẽ đường tròn (O) đường kính AB cắt AC tại N. Gọi E là điểm đối xứng của H qua AC, EN cắt AB tại M và cắt (O) tại điểm thứ hai D.
1) Chứng minh: AD = AE.
2) Chứng minh HA là phân giác của MHN
3) Chứng minh: a) 5 điểm A, E, C, M, H thuộc đường tròn (O1). b) 3 đường thẳng CM, BN, AH đồng quy.
4) DH cắt (O1) tại điểm thứ hai Q. Gọi I, K lần lượt là trung điểm của DQ và BC. Chứng tỏ I thuộc đường tròn (AHK).
Cho tg ABC nhọn AB>AC vẽ đg tròn O đg kính BC lần lượt cắt M,N.BN cắt CM tại H
a)Cm:AB vuông với BC A,M,N,H cùng thuộc đg tròn O
b)AH cắt BC tại D
Cm:AM*AB=AH*AO=AN*AC
c)BN*ON+CN*CA=BC^2 ,cho AN=2cm,NC=3cm,BN=4cm.tính diện tích AHC
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
Giúp mk vs mk đg cần gấp!!!
Cho nửa đường tròn tâm O, đường kính AB. Gọi C là một điểm bất kì trên nửa đường tròn đó và M là điểm chính giữa của cung AC. Dây AC cắt dây BM tại H, đường thằng AM cắt đường thẳng BC tại E. Chứng minh:
a. Tứ giác EMHC nội tiếp được một đường tròn.
b. EH vuông góc với AB.
c. Tam giác ABE cân.
Cho tam giác ABC nhọn ( AB < AC ) .Đường tròn tâm O có đường kính BC cắt AB và AC lần lượt tại E và D . Gọi H là giáo điểm của CE và BD .
a ) AH cắt BC tại F : CMR AF vuông góc với BC
b) kẻ HK ⊥ OA tại K .C/m A,D,K,E cùng thuộc 1 đường tròn
Cho △ABC nhọn (AB<AC) nội tiếp đường tròn (O;R) có đường cao AD. Tia AD cắt (O) tại điểm M (M khác A). Vẽ ME vuông góc với AC tại E. Đường thẳng ED cắt đường thẳng AB tại I.
a) Cm: tứ giác MDEC nội tiếp và MI vuông góc AB
b) Cm: AB.AI=AE.AC
c) Gọi H là điểm đối xứng M qua BC. Tia BH cắt AC tại S. Lấy điểm T thuộc AB sao cho ST // EI. Cm: C,H,T thẳng hàng
d) Vẽ đường kính AK của (O) cắt BC tại F. AH cắt TS tại I. Cm: IF // HK
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)
Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Vẽ các đg cao AD, BE, CF của tam giác ABC cắt nhau tại H. Kẻ đg kính AM.
a) Cm tứ giác BHCM là hình bình hành
b) Gọi I là giao điểm HM và BC. Cm OI vuông góc BC và AH = 2OI
c) Gọi G là trọng tâm tam giác ABC. Cm O, G, H thẳng hàng.
d) Cm SAGH= 2SAGO