Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Phạm Ánh Tuyết

1/ 3x2 + 6x - 11

2/ \(\frac{3x^2+2x+7}{3x^2+2x+1}\)

Tìm Max hoặc Min 

 

 

 

nguyễn kim thương
4 tháng 6 2017 lúc 20:59

1/

\(A=3x^2+6x-11\)\(=3\left(x^2+2x-\frac{11}{3}\right)\)\(=3\left[\left(x^2+2x+1\right)-\frac{14}{3}\right]\)\(=3\left(x+1\right)^2-14\ge-14\)

VẬY \(minA=-14\)khi   \(x=-1\)

2/

\(B=\frac{3x^2+2x+7}{3x^2+2x+1}=1+\frac{6}{3x^2+2x+1}\)

Biểu thức   \(\frac{6}{3x^2+2x+1}\)đạt GTLN khi   \(3x^2+2x+1\)nhỏ nhất 

Mà   \(3x^2+2x+1\ge1\)nên GTNN của   \(3x^2+2x+1\)là  \(1\)

Ta có :  \(maxB=1+6=7\) khi   \(x=0\)

TK mk nka !!!!! 

Hoàng Thanh Tuấn
4 tháng 6 2017 lúc 20:53
\(3x^2+6x-11=3\left(x^2+2x+1\right)-14=3\left(x+1\right)^2-14\ge-14\)​ \(\Rightarrow Min=-14\Leftrightarrow x=-1\)\(B=\frac{3x^2+2x+7}{3x^2+2x+1}=1+\frac{6}{3x^2+2x+1}\)phân số đạt lớn nhất khi \(3x^2+2x+1\)giá trị nhỏ nhất nên \(3x^2+2x+1=3x^2+\frac{2.\sqrt{3}}{\sqrt{3}}x+\frac{1}{3}+\frac{4}{3}=\left(x\sqrt{3}+\frac{1}{\sqrt{3}}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)

         \(\Rightarrow B_{max}=1+\frac{6}{\frac{4}{3}}=\frac{11}{2}\Leftrightarrow x=-\frac{1}{3}\)

l҉o҉n҉g҉ d҉z҉
4 tháng 6 2017 lúc 20:56

Ta có : 3x2 + 6x - 11 

= 3x2 + 3.x.3 - 9 - 2 

= (3x2 - 3)2 

Mà  (3x - 3)2 \(\le0\forall x\in R\)

Nên 3x2 + 6x - 11 min = 0 khi x = 1


Các câu hỏi tương tự
bumby nhi
Xem chi tiết
Vĩ Vĩ
Xem chi tiết
Trần Y Y
Xem chi tiết
Anonymus The
Xem chi tiết
Nguyen Thi Thu Ha
Xem chi tiết
Nguyen Minh Vu
Xem chi tiết
Khúc Thị Thơ
Xem chi tiết
Đào Thu Hà
Xem chi tiết
Hà Thị Thanh Xuân
Xem chi tiết