tính a: [1-1/2*2]*[1-1/3*3]*[1-1/4*4]*[1-1/5*5]*......*[1-1/2015*2015]*[1-1/2016*2016]
A = 1/2 + 1/3 +1/4 +.....+1/2016 + 1/2017 B = 2016/1 + 2015/2 + ......+ 2/2015 + 1/2016 . Tính B/A
A= ( 1/2017+ 2/2016+ 3/2015+...+ 2015/3+ 2016/2+ 2017) : ( 1/2+1/3+1/4+...+1/2017+1/2018)
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?
A=(1/1009+1/1010+...+1/2015+1/2016):(1/1-1/2+1/3-1/4+...+1/2015-1/2016)
Tinh:
S=2015 + 2015/1+2 +2015/1+2+3 + 2015/1+2+3+4 +... + 2015/1+2+3+...+2016
Tinh:
S=2015 + 2015/1+2 +2015/1+2+3 + 2015/1+2+3+4 +... + 2015/1+2+3+...+2016
tính nhanh
A=1+3-5+7-..........-2013+2015
B=1-2+3-4+...................2015-2016
C=1-2-3+4+5-6-6+8+...........+2013-2014-2015+2016
D=1-4+7-10+.....-2014+2017
E=1+2-3-3+5+6 -.......+2013+2014-2015-2016
F=1-2+3-4+..........+2015+2016
G=1+3-5-7+9+11.............-2013-2015
H=1-2-34+5-6-7+8+.................+1013-1014-1015+1016
cho A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/ 2015^2 + 1/2016^2. Chứng minh rằng: A < 2015/2016
tính m=2016+2016/2+2015/3+2014/4+...+1/2017/1/2+1/3+1/4+...+1/2017