1)Đặt A = \(\frac{1}{7.8}+\frac{1}{14.10}+\frac{1}{20.13}+...+\frac{1}{38.22}\)
\(\frac{1}{2}A=\frac{1}{8.14}+\frac{1}{14.20}+...+\frac{1}{38.44}\)
\(\frac{1}{2}A=6\left(\frac{1}{8}-\frac{1}{14}+\frac{1}{14}-\frac{1}{20}+...+\frac{1}{38}-\frac{1}{44}\right)\)
\(\frac{1}{2}A=6\left(\frac{1}{8}-\frac{1}{44}\right)\)
\(\frac{1}{2}A=6.\frac{9}{88}\)
\(\frac{1}{2}A=\frac{27}{44}\)
\(A=\frac{1}{44}:\frac{1}{2}=\frac{1}{22}\)
2) a) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{1}{3}-\frac{1}{9}-\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{2}{9}-\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{1}{x\left(x+2\right)}=\frac{2}{9}-\frac{2018}{2020}\)
Hình như đề sai . Hoặc là mình sai >: