=> \(2\sqrt{x}-1=\sqrt{x}+1\)
<=> \(2\sqrt{x}-1-\sqrt{x}-1=0\)
<=> \(\sqrt{x}-2=0\)
=> \(\sqrt{x}=2\)
=> \(x=2^2=4\)
a)\(\dfrac{2\sqrt{x}-1}{\sqrt{x+1}}=1\)
\(\Leftrightarrow2\sqrt{x}-1=\sqrt{x}+1\)
\(\Leftrightarrow2\sqrt{x}-1-\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow2\sqrt{x}-1-\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
`=> 2 sqrt x - 1 = sqrt x + 1`
`=> 2 sqrt x -1 - sqrt x - 1 = 0`
`=> sqrt x - 2 = 0`
`=> sqrt x = 2`
`=> x = 2^2 = 4`.
\(\dfrac{2\sqrt{x}-1}{\sqrt{x+1}}=1\)
\(\Leftrightarrow2\sqrt{x}-1=\sqrt{x}+1\)
\(\Leftrightarrow2\sqrt{x}-1-\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow2\sqrt{x}-1-\sqrt{x}+1=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)