Chỉ tìm được khi có thêm điều kiện a, b dương, còn như bài toán cho thì GTNN của P không tồn tại
Chỉ tìm được khi có thêm điều kiện a, b dương, còn như bài toán cho thì GTNN của P không tồn tại
Cho biểu thức: B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) với x > 0, x ≠ 1
a, Rút gọn biểu thức B
b, Tìm giá trị của x để biểu thức B có giá trị nhỏ hơn \(\frac{1}{2}\)
cho biểu thức A= \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a > 0
a) rút gọn biểu thức
b) tính giá trị nhỏ nhất của A.
cho biểu thức P= \(\left(\frac{a\sqrt{a}+1}{a-1}-\frac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\frac{\sqrt{a}}{\sqrt{a}-1}\right)\) với a > 0; a khác 1
a) rút gọn biểu thức
b) tính giá trị của P khi a = 3-2\(\sqrt{2}\)
Cho biểu thức M=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn biểu thức M
b) Tìm giá trị của x để biểu thức M đạt giá trị nhỏ nhất
Cho biểu thức Y=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a. Rút gọn biểu thức Y. Tìm giá trị nhỏ nhất của Y
b. cho x>1. Chứng minh rằng Y-|Y|=0
Cho hai biểu thức A = xx -2 - x +1x + 2 + 4x-4 và B = , với , x≠4 1) Tính giá trị của biểu thức B khi x = . 2) Rút gọn biểu thức M = A : (B + 1) 3) Tìm giá trị nhỏ nhất của biểu thức M.
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Cho biểu thức: \(P=\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
a) Rút gọn P. Tính giá trị của P nếu \(a=2-\sqrt{3}\) và \(b=\frac{\sqrt{3}-1}{1+\sqrt{3}}\)
b) Tìm giá trị nhỏ nhất của P nếu \(\sqrt{a}+\sqrt{b}=4\)
Tìm giá trị nhỏ nhất của mỗi biểu thức:
a,A=\(\frac{3}{2+\sqrt{2x-x^2+8}}\)
b,B=\(\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}\)