ĐKXĐ: x>0
a) \(Y=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
Ta có \(Y=x-\sqrt{x}=x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu '=' xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Vậy GTNN của Y là \(-\frac{1}{4}\)
b) Ta có x>1\(\Leftrightarrow x>\sqrt{x}\Leftrightarrow x-\sqrt{x}>0\)
Ta lại có \(Y-\left|Y\right|=x-\sqrt{x}-\left|x-\sqrt{x}\right|=x-\sqrt{x}-\left(x-\sqrt{x}\right)=0\)
Vậy khi x>1 thì \(Y-\left|Y\right|=0\)