tớ ra kết quả là 2+\(\frac{5\sqrt{xy}}{x-\sqrt{xy}+y}\) mà thấy số xấu quá :(
ĐKXĐ:
\(P=\left(\frac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{x\sqrt{x}-y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right).\frac{\left(\sqrt{x}+\sqrt{y}\right)}{x-\sqrt{xy}+y}\)
\(=\left(\frac{x\sqrt{y}-y\sqrt{x}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right).\left(\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\right)\)
\(=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)}.\frac{1}{\left(x-\sqrt{xy}+y\right)}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
\(P=\frac{\sqrt{xy}}{x-\sqrt{xy}+\frac{y}{4}+\frac{3y}{4}}=\frac{\sqrt{xy}}{\left(\sqrt{x}-\frac{\sqrt{y}}{2}\right)^2+\frac{3y}{4}}\)
Do \(\left\{{}\begin{matrix}\sqrt{xy}\ge0\\y\ge0\end{matrix}\right.\) \(\Rightarrow P\ge0\) \(\forall x;y\)