a) \(x-\sqrt{x}+1=\left(\sqrt{x}\right)^2-\frac{1}{2}2\sqrt{x}+\frac{1}{4}+\frac{3}{4}\)\(=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của biểu thức là \(\frac{3}{4}\)khi x=\(\frac{1}{4}\)
a) \(x-\sqrt{x}+1=\left(\sqrt{x}\right)^2-\frac{1}{2}2\sqrt{x}+\frac{1}{4}+\frac{3}{4}\)\(=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của biểu thức là \(\frac{3}{4}\)khi x=\(\frac{1}{4}\)
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
a) Tìm giá trị lớn nhất của biểu thức A = \(\sqrt{-x^2+x+\dfrac{3}{4}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B = \(\sqrt{4x^4-4x^2\left(x+1\right)+\left(x+1\right)^2+9}\)
c) Tìm giá trị nhỏ nhất của biểu thức C = \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
Giải pt:
a) \(\sqrt{2x^2-3}\)=\(\sqrt{4x-3}\)
b) \(\sqrt{2x-1}\)=\(\sqrt{x-1}\)
c) \(\sqrt{x^2-x-6}\)=\(\sqrt{x-3}\)
d) \(\sqrt{x^2-x}\)=\(\sqrt{3x-5}\)
Giúp em với, anh thịnh giúp em xíu á
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
a) A = \(\sqrt{x^2-8x+20}-12\)
b) B = 2.\(\sqrt{x^2+3x+5}\)
c) C = \(\frac{3}{1+\sqrt{2x-x^2+8}}\)
Bài 2: Tìm giá trị lớn nhất của biểu thức:
a) A = \(\sqrt{7-2x^2}\)
b) B = \(\sqrt{-4x^2-4x+6}+5\)
c) C = 7 + \(\sqrt{-4x^2+4x}\)
Bài 5. Cho biểu thức: C = \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-2}\) 𝑣ớ𝑖 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm x nguyên để C đạt giá trị nguyên nhỏ nhất
Bài 6. Cho biểu thức: D = \(\dfrac{x-3}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm x nguyên để D có giá trị là số nguyên
Tìm các giá trị của x để mỗi biểu thức sau có nghĩa:
a) \(A=\sqrt{4x^2-1}\)
b) \(B=\sqrt{2x^2+4x+5}\)
c) \(C=\dfrac{1}{\sqrt{2x-x^2}}\)
d) \(D=\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\)
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Cho biểu thức
M=\(\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right).\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)với x\(\ge\)0;x\(\ne\)4;x\(\ne\)49
a.Rút gọn M
b.Tính giá trị biểu thức của M tại x thỏa mãn \(^{x^2}\)-4x=0
c.Tìm x biết M=\(-\dfrac{\sqrt{x}}{4}\)
d.Tìm x biết M<-1