Bài 2:
\(=\dfrac{2x^3-6x^2-x^2+3x+x-3-2}{x-3}\)
\(=2x^2-x+1-\dfrac{2}{x-3}\)
\(1,\\ a,=x^{10}\\ b,=-5x^5y^6\\ 2,\\ =\left(2x^3-6x^2-x^2+3x+x-3-2\right):\left(x-3\right)\\ =\left[2x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-2\right]:\left(x-3\right)\\ =2x^2-x+1\left(\text{dư }-2\right)\\ 3,\Leftrightarrow x^3-3x^2+5x+a=\left(x-2\right)\cdot a\left(x\right)\\ \text{Thay }x=2\\ \Leftrightarrow8-12+10+a=0\\ \Leftrightarrow a=-6\)