HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{36}=7+6=13\)
\(\rightarrow\sqrt{48}< 13-\sqrt{35}\)
Để phương trình có 2 nghiệm phân biệt
\(\Delta=\left(2-m\right)^2-4.1.\left(m-3\right)>0\Leftrightarrow m^2-4m+4-4m+12>0\)
\(\Leftrightarrow m^2-8m+16>0\Leftrightarrow\left(m-4\right)^2>0\Leftrightarrow m-4\ne0\Leftrightarrow m\ne4\)
Thấy : \(1+\left(2-m\right)+m-3=0\)
-> phương trình có nghiệm là 1
Th1 : \(x_1=1;x_2=\dfrac{c}{a}=m-3\)
\(\left|x_1\right|+x_2^2=2\Leftrightarrow\left|1\right|+\left(m-3\right)^2=2\)
\(\Leftrightarrow\left(m-3\right)^2=1\Leftrightarrow\)\(\left\{{}\begin{matrix}m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\left(L\right)\\m=2\left(C\right)\end{matrix}\right.\)
TH2 : \(x_1=\dfrac{c}{a}=m-1;x_2=1\)
\(\Leftrightarrow\left|m-1\right|+1^2=2\Leftrightarrow\left|m-1\right|=1\)
hoàn toàn giống với th1.
Vậy \(m=2\)
Để phương trình có nghiệm
\(\Delta'=\left(-m\right)^2-1.\left(m^2-\dfrac{1}{2}\right)\ge0\Leftrightarrow\dfrac{1}{2}\ge0\) ( luôn đúng)
Áp dụng vi.et có
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-\dfrac{1}{2}\end{matrix}\right.\)
Theo bài ra ta có
\(x_1^2+x_2^2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=9\)
\(\Leftrightarrow\left(2m\right)^2-2\left(m^2-\dfrac{1}{2}\right)=9\)
\(\Leftrightarrow4m^2-2m^2+1=9\)
\(\Leftrightarrow2m^2=8\Leftrightarrow m^2=4\Leftrightarrow m=\pm2\)
Áp dụng AM-GM
\(\dfrac{x+y}{\sqrt{xy}}\ge\dfrac{2\sqrt{xy}}{\sqrt{xy}}=2\)
\(P=\dfrac{\sqrt{xy}}{x+y}+\dfrac{x+y}{4\sqrt{xy}}+\dfrac{3}{4}.\dfrac{x+y}{\sqrt{xy}}\)
\(P\ge2\sqrt{\dfrac{\sqrt{xy}}{x+y}.\dfrac{x+y}{4\sqrt{xy}}}+\dfrac{3}{4}.2=1+\dfrac{3}{2}=\dfrac{5}{2}\)
Dấu "=" \(\Leftrightarrow x=y\)
???? hơi lỗi
tớ mượn test cái nha
Áp dụng định lí viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-3\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)
\(x_1\left(x_1^4-1\right)+x_2\left(32x_2^4-1\right)=3\)
\(\leftrightarrow\left(x_1\right)^5+\left(2x_2\right)^5-\left(x_1+x_2\right)=3\)
\(\leftrightarrow x_1^5+\left(2x_2\right)^5-\left(-3\right)=3\)
\(x_1^5+\left(2x_2\right)^5=0\leftrightarrow x_1=-2x_2\)
Thay vào (1)\(\rightarrow x_1=-6;x_2=3\)
Thay vào (2)\(\rightarrow m-1=\left(-6\right).3=-18\rightarrow m=-17\)
\(\left(a,b,n\in N\right)\left\{{}\begin{matrix}n^2=a+b\\n^3+2=a^2+b^2\end{matrix}\right.\)
Áp dụng BĐT cơ bản : \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\)
\(\rightarrow n^3+2=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\left(n^2\right)^2=\dfrac{1}{2}n^4\)
\(\Rightarrow n^3+2-\dfrac{n^4}{2}\ge0\)\(\Rightarrow0\le n\le2\)
Xét từng TH của n và kết quả nhận được là \(n=2\); (a,b) là hoán vị của (1,3)
bn có thể ghi rõ hơn ?
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3.\dfrac{1}{\sqrt[3]{abc}}=9\)
\(\rightarrow1.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
vậy ta có điều phải chứng minh
Dấu "=" \(a=b=c=\dfrac{1}{3}\)