HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác ABC, gọi O là giao 3 đường phân giác trong tam giác; trên 2 cạnh AB; AC lần lượt lấy hai điểm M và N thỏa mãn: BM.BC=\(BO^2\); CN.CB=\(CO^2\). CMR:
a) Tam giác MBO đồng dạng với 2 tam giác OBC, NOC
b) AO vuông góc với MN
Cho đa thức: \(f\left(x\right)=x^3-3x^2+2\). Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức: \(x^2+ax+b\)
Cho tam giác ABC có góc B, C nhọn, đường phân giác AD. Biết \(AD=AB=\sqrt{5}\), BD=2cm. Tính độ dài DC
Cho: \(x\ge1\). Tìm GTNN của biểu thức: \(Q=3x+\dfrac{1}{2x}\)
Cho hai số a,b thỏa mãn: 2a+b=2. Chứng minh: \(ab\le\dfrac{1}{2}\)
Giải phương trình sau: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)