a) Ta có:
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow\) \(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\) \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\) \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)
Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)
(1)(2) \(\Rightarrow\) \(\begin{cases}
(a-b)^{2}=0\\
(b-c)^{2}=0\\
(a-c)^{2}=0
\end{cases}
\) \(\Leftrightarrow\) \(\begin{cases}
a-b=0\\
b-c=0\\
a-c=0
\end{cases}
\) \(\Leftrightarrow\) \(\begin{cases}
a=b\\
b=c\\
a=c
\end{cases}
\) \(\Leftrightarrow\) a=b=c
b) Ta có: \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2ac+2bc=3a^2+3b^2+3c^2\)
\(\Leftrightarrow\) \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ac-2bc-2ab=0\)
\(\Leftrightarrow\) \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\) \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)
(1)(2) \(\Rightarrow\) \(\begin{cases}
(a-b)^{2}=0\\
(b-c)^{2}=0\\
(a-c)^{2}=0
\end{cases}
\) \(\Leftrightarrow\) \(\begin{cases}
a-b=0\\
b-c=0\\
a-c=0
\end{cases}
\) \(\Leftrightarrow\) \(\begin{cases}
a=b\\
b=c\\
a=c
\end{cases}
\) \(\Leftrightarrow\) a=b=c
c. Ta có: \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2ac+2bc=3ab+3bc+3ac\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac=0\)
\(\Leftrightarrow\) \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow\) \(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\) \(\left(a^2-2bc+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)
(1)(2) \(\Rightarrow\) \(\begin{cases}
(a-b)^{2}=0\\
(b-c)^{2}=0\\
(a-c)^{2}=0
\end{cases}
\) \(\Leftrightarrow\) \(\begin{cases}
a-b=0\\
b-c=0\\
a-c=0
\end{cases}
\) \(\Leftrightarrow\) \(\begin{cases}
a=b\\
b=c\\
a=c
\end{cases}
\) \(\Leftrightarrow\) a=b=c
Chúc bạn học tốt 