Ta có: B=\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow\) 2B= \(2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3-1\right).\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
= \(\left(3^{16}-1\right)\left(3^{16}+1\right)\)
= \(3^{32}-1\)
\(\Rightarrow\) B= \(\dfrac{3^{32}-1}{2}\)
Mà ta có A= \(3^{32}-1\)
\(\Rightarrow\) A=2B