HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Hu hu tui cũng thế !
từ C vẽ Ct // DE
ta co goc tCD+goc CDE=180 ( 2 goc trong cung phia va Ct//DE)
==> goc tCD+100=180
---> goc tCD =180-100=80
ta co goc tCD+ goc tCA=goc ACD
--->80+goc tCA=140
--> goc tCA=140-80=60
ta co : goc CAB + goc tCA=120+60=180
ma goc CAB va goc tCA nam o vi tri trong cung phia nen AB//Ct
ma DE// Ct (cmt)
nen AB// DE
áp dụng BĐT bnyacovsky :\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\left(4+4\right)\left(a^4+b^4\right)\ge\left(2a^2+2b^2\right)^2\ge\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)
dấu = xảy ra khi a=b
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)
\(y^2\ge0\Rightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\)
\(\Leftrightarrow\left(x+y+3\right)^2\le1\rightarrow\left|x+y+3\right|\le1\)
\(\Rightarrow-1\le x+y+3\le1\Leftrightarrow2012\le B\le2014\)
dấu = xảy ra: #MIn: \(\left\{\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
#MAX:\(\left\{\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
x+y+z=a\(\rightarrow\frac{1}{x+y+z}=\frac{1}{a}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}a=z\\a=x\\a=y\end{matrix}\right.\)
thay vào ta đều tính được S=0