HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a3+b3+c3=3abc <=> (a+b)3-3ab(a+b)+c3=3abc
<=> (a+b+c)3-3(a+b)c(a+b+c)-3ab(a+b)-3abc=0
<=> (a+b+c)3-3c(a+b)(a+b+c)-3ab(a+b+c)=0
<=>(a+b+c)(a2+b2+c2+2ab+2bc+2ca-3ac-3bc-3ab)=0
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
<=> (a+b+c)\(\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}\)=0
<=> \(\left[\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
mà a,b,c dương nên a+b+c khác 0 => a=b=c
A B C T D O E M F
lời giải vắn tắt:
a) \(\widehat{AMB}\)là góc nội tiếp chắn nửa đường tròn => \(\widehat{AMB}=90^o\)
=>\(\widehat{OMA}+\widehat{OMT}=\widehat{AMB}=90^o\)
MF là tiếp tuyến của (O)=> \(\widehat{OMF}=90^o\rightarrow\widehat{OMT}+\widehat{TMF}=\widehat{OMF}=90^o\)
=> \(\widehat{OMA}=\widehat{TMF}\)(1)
\(\Delta MAB\)~\(\Delta OTB\)(g.g)(tự cm)=>\(\widehat{OAM}=\widehat{OTB}\)
mà \(\widehat{OCB}=\widehat{MTF}\)(đối đỉnh) =>\(\widehat{OAM}=\widehat{MTF}\)(2)
từ (1) và (2)=> \(\Delta OMA\)~\(\Delta FMT\)(g.g)\(\rightarrow\frac{MA}{MT}=\frac{OA}{FT}\rightarrow MA.FT=OA.MT\)
b)\(\Delta OMA\)~\(\Delta FMT\)(cmt ) mà \(\Delta OMA\)cân ở O=> \(\Delta FMT\)cân ở F
=> FM=FT
mà \(\Delta TME\) vuông ở M => ..... FM=FE
c) ta cm được TA=TB
lại có:\(\Delta MTE\)~\(\Delta OTB\)(g.g) \(\rightarrow\frac{ME}{OB}=\frac{TE}{TB}\)\(\rightarrow ME.TB=OB.TE\)
\(\rightarrow ME.TA=R.2R=2R^2\)(TE=2FM=2R)
cách 1: đặt a = x+2 ,=> A= (a-3)4+(a+3)4-120
tách ra là ổn
cách 2 : áp dụng BĐT bunyakovsky:
(1+1)(a2+b2)\(\ge\)(a+b)2=> a2+b2\(\ge\)\(\frac{\left(a+b\right)^2}{2}\)(dấu = xảy ra khi a=b)
A= (x-1)4+(x+5)4-120=(1-x)4+(x+5)4-120\(\ge\)\(\frac{1}{2}\left[\left(x-1\right)^2+\left(x+5\right)^2\right]^2-120\)
\(A\ge\frac{1}{2}\left(2x^2+8x+26\right)^2-120=\frac{1}{2}\left[2\left(x+2\right)^2+18\right]^2-120\ge\frac{18^2}{2}-120=42\)
dấu = xảy ra khi 1-x=x+5 và x+2=0
=> x=-2
ta có: \(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)
\(2P=\left(x^2-2x\sqrt{y}+y\right)+\left(x^2+2x+1\right)+\left(y-2\sqrt{y}+1\right)\)
\(2P=\left(x-\sqrt{y}\right)^2+\left(x+1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\forall x,y\)
\(\Rightarrow P\ge0\forall x,y\)
dấu = xảy ra khi \(\left\{\begin{matrix}x=\sqrt{y}\\x=-1\\\sqrt{y}=1\end{matrix}\right.\)(có gì đó sai sai)
chờ Em hai mươi năm :v
\(\left\{\begin{matrix}x^3-3x-2=2-y\\y^3-3y-2=2-z\\z^3-3z-2=2-x\end{matrix}\right.\)
ta có: x3-3x-2=x3-2x2+2x2-4x+x-2
=x2(x-2)+2x(x-2)+(x-2)=(x-2)(x+1)2
tương tự : y3-3y-2=(y-2)(y+1)2; z3-3z-2=(z-2)(z+1)2
ta có hệ pt:\(\left\{\begin{matrix}\left(x-2\right)\left(x+1\right)^2=2-y\\\left(y-2\right)\left(y+1\right)^2=2-z\\\left(z-2\right)\left(z+1\right)^2=2-x\end{matrix}\right.\)
nhân vế vs vế 3 pt trên :\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=\left(2-x\right)\left(2-y\right)\left(2-z\right)\)
\(\Leftrightarrow\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=-1\)
vt >= 0, vF <0 vậy hệ pt vô nghiệm
n(n+5)-(n-3)(n+2)= n2+5n-n2-2n+3n+6=6n+6 =6(n+1)\(⋮6\forall n\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
\(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(xy+yz+xz\right)\left(...\right)}{x^2y^2z^2}=0\)
\(x^4+\sqrt{x^2+2002}=2002\) (DKXĐ: xác định vs mọi x)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}+\sqrt{x^2+2002}=x^2+2002+\frac{1}{4}\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2002-\sqrt{x^2+2002}+\frac{1}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2002}-\frac{1}{2}\right)^2\)
xét \(x^2+\frac{1}{2}=\sqrt{x^2+2002}-\frac{1}{2}\Leftrightarrow x^2+1=\sqrt{x^2+2002}\)
\(\Leftrightarrow x^4+2x^2+1=x^2+2002\Leftrightarrow x^4+x^2-2001=0\)
đặt x2=a(a>0) => a2+a-2001=0
\(\Delta=1+4.2001=8005\rightarrow\left[\begin{matrix}a=\frac{\sqrt{8005}-1}{2}\\a=\frac{-\sqrt{8005}-1}{2}\end{matrix}\right.\)
mà a>0 \(\rightarrow a=\frac{\sqrt{8005}-1}{2}\Leftrightarrow x=\pm\sqrt{\frac{\sqrt{8005}-1}{2}}\)
xét\(x^2+\frac{1}{2}=\frac{1}{2}-\sqrt{x^2+2002}\Leftrightarrow x^2=-\sqrt{x^2+2002}\)(vô nghiệm)
vậy pt có 2 nghiệm là...