qua de
\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}\)
áp dụng BĐT bnyacovsky :\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\left(4+4\right)\left(a^4+b^4\right)\ge\left(2a^2+2b^2\right)^2\ge\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)
dấu = xảy ra khi a=b