ủa nhưng mà thỏa mãn cái gì mới c.m mấy cái kia chứ
sorry thay thỏa mãn là chứng minh đi mk nhầm
ủa nhưng mà thỏa mãn cái gì mới c.m mấy cái kia chứ
sorry thay thỏa mãn là chứng minh đi mk nhầm
1,Cho các số thực a,b,c thỏa mãn điều kiện : \(a^2+b^2+c^2=3\) và \(a+b+c+ab+ac+bc=6\).
Tính \(A=\frac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2014}}\)
2, Cho \(a,b,c\ne0\) thỏa mãn \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\),
Chứng minh : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{3}{4}+\frac{ab}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(b+c\right)\left(c+a\right)}+\frac{ca}{\left(c+a\right)\left(a+b\right)}\)
HELP ME....MAI MÌNH NỘP RỒI
mình cảm ơn
Câu 1: Cho \(\frac{x}{x^2+x+1}\)=\(\frac{11}{133}\)
Tính A=\(\frac{x^2}{x^4+x^2+1}\)( 2 cách)
Câu 2: Cho x+y+z=4. Tính B=\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Câu 3: Cho G=\(\frac{a^2}{ab+b^2}+\frac{b^2}{ab-a^2}+\frac{-\left(a^2+b^2\right)}{ab}\)
a) Rút gọn G
b) Tính G khi \(\frac{a}{b}=\frac{a+1}{b+5}\)
Câu 5 Cho a , b , c là các số thực dương thoả mãn abc = 1. Chứng minh
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\)
HELP...... MAI MÌNH PHẢI NỘP RỒI
MÌNH CẢM ƠN
Cho các số thực dương a, b, c thỏa mãn abc=1. tìm GTNN của biểu thức \(P=\frac{\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)}{ab+bc+ca}+\frac{1}{a+b+c}\)
a) Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
b) Cho a, b, c khác nhau đôi một. Chứng minh rằng:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
Bài 1: Cho a,b,c đôi một khác nhau. Chứng minh rằng:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\) và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Mọi người làm nhanh giúp em với ạ!
Thực hiện phép tính sau:
\(P=\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Giải phương trình:
a) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
b) \(\frac{3}{10}\left(1,2-x\right)-\frac{5+7x}{4}=\frac{1}{20}\left(9x+0,2\right)-\frac{12,5x+4,5}{5}\)
Cho a, b là 2 số dương. Chứng minh: \(a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)