HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\Delta=\left(m-1\right)^2-4.\left(-m\right)\)
\(=\left(m^2-2m+1\right)+4m=\left(m+1\right)^2\)
Để pt có 2 nghiệm phân biệt => \(m\ne-1\)
\(\left[{}\begin{matrix}x_1=\dfrac{m-1+m+1}{2}=m\\x_2=\dfrac{m-1-m-1}{2}=-1\end{matrix}\right.\)
Để pt có 2 nghiệm phân biệt bé 1
\(\Rightarrow m< 1\)
Ta có:
\(x^2+\dfrac{1}{x^2}=4\)\(\left(x\ne0\right)\)
\(\left(x^2+\dfrac{1}{x^2}\right)^2=16\)
\(x^4+\dfrac{2.x^2}{x^2}+\dfrac{1}{x^4}=16\)
\(x^4+\dfrac{1}{x^4}=16-2=14\)
\(2024.3+2024.9-12.24\)
=\(2024\left(3+9\right)-12.24\)
\(=12.2024-12.24\)
\(=12\left(2024-24\right)\)
\(=12.2020=24240\)
a) Ta có:
\(CA\perp AB;DB\perp AB\)
\(\Rightarrow AC//BD\)
b) \(\widehat{ACD}=\widehat{BDE}=78^o\) (đồng vị)
\(\left(2x-3\right)^{2022}=\left(2x-3\right)^{2021}\)
\(\left(2x-3\right)^{2021}\left(2x-3-1\right)=0\)
\(\left(2x-3\right)^{2021}\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
\(A=\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
\(=a-b\)
\(\widehat{xOn}=180^o-\widehat{nOy}=180^o-30^o=150^o\)
\(\widehat{xOm}=\widehat{nOy}=30^o\)(đối đỉnh)
\(\widehat{mOy}=\widehat{xOn}=150^o\)(đối đỉnh)
a) \(\widehat{ABy}=\widehat{xAB}=120^o\)(so le trong)
b) \(\widehat{BCz}=\widehat{BAx}=120^o\) mà 2 góc có vị trí đồng vị
=> Cz//Ax
=> By//Ax//Cz
a) x=16
=> \(A=\dfrac{\sqrt{16}+2}{\sqrt{16}+5}=\dfrac{6}{9}=\dfrac{2}{3}\)
b) \(B=\dfrac{x+20+\sqrt{x}-2-6\left(\sqrt{x}+2\right)}{x-4}\)
\(=\dfrac{x-5\sqrt{x}+6}{x-4}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x+2}}\)
c) \(\sqrt{AB}=\sqrt{\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x+5}\right)\left(\sqrt{x}+2\right)}}=\sqrt{\dfrac{\sqrt{x}-3}{\sqrt{x}+5}}\left(đk:x\ge9\right)\)
\(\sqrt{AB}< \dfrac{1}{2}\Rightarrow\sqrt{\dfrac{\sqrt{x}-3}{\sqrt{x}+5}}< \dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x}+5>4\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow3\sqrt{x}< 17\)
\(\Leftrightarrow\sqrt{x}< \dfrac{17}{3}\) \(\Rightarrow0\le x< \dfrac{289}{3}\)
Gọi \(d=\left(n+2;2n+3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}n+2⋮d\\2n+3⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+4⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow\)\(1⋮d\Rightarrow d=1\)