HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)(t/c dãy tỉ số bằng nhau)
\(\Rightarrow\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\)\(\Rightarrow y+z=\dfrac{1}{2}-x\)
Ta có: \(\dfrac{\dfrac{1}{2}-x+1}{x}=2\Rightarrow x=\dfrac{1}{2}\)
\(\Rightarrow y+z=0\Rightarrow y=-z\)
Ta có:
\(\dfrac{z+x+2}{y}=2\)\(\Rightarrow\dfrac{-y+\dfrac{1}{2}+2}{y}=2\Rightarrow y=\dfrac{5}{6}\Rightarrow z=-\dfrac{5}{6}\)
\(\sqrt{x+1}+\sqrt{x-2}=3\left(Đk:x\ge2\right)\)
\(x+1+x-2+2\sqrt{\left(x+1\right)\left(x-2\right)}=9\)
\(2\sqrt{x^2-2x+x-2}=10-2x\)
\(\sqrt{x^2-x-2}=5-x\)
\(x^2-x-2=x^2-2x+25\)
\(x=27\)
\(P\left(x\right)=5x^3-3x+7\)
a) Thay x=-1
=> \(P\left(-1\right)=5.\left(-1\right)^3-3.\left(-1\right)+7\)
\(\Rightarrow P\left(-1\right)=-5+3+7=5\)
b) Thay x=-2
=> \(P\left(-2\right)=5.\left(-2\right)^3-3.\left(-2\right)+7\)
\(\Rightarrow P\left(-2\right)=-40+6+7=-27\)
\(\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=\left(x+y-z\right)^2\)
\(2A-A=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+...+2^{20}\right)\)
\(A=2^{21}-2\)
B tương tự câu A
\(5C-C=\left(5^2+5^3+...+5^{51}\right)-\left(5+5^2+...+5^{50}\right)\)
\(C=\dfrac{5^{51}-5}{4}\)
\(3D-D=3+3^2+...+3^{101}-\left(1+3+...+3^{100}\right)\)
\(D=\dfrac{3^{101}-1}{2}\)
A B C E F I
a) \(\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IB}-\overrightarrow{IB}=\overrightarrow{0}\)
b) \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)
\(=2\overrightarrow{GE}+\overrightarrow{GC}=2\overrightarrow{GE}-2\overrightarrow{GE}=\overrightarrow{0}\)
\(2x=3y=5z\)\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{3y}{30}=\dfrac{2z}{12}=\dfrac{x+3y-2z}{15+30-12}=\dfrac{66}{33}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=12\end{matrix}\right.\)
a) Xét tứ giác ADHE có:
\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{HDA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)
=> ADHE là h.c.n
b) Ta có:
\(\left\{{}\begin{matrix}\widehat{BID}=2\widehat{IHD}\\\widehat{IKE}=2\widehat{KCE}\end{matrix}\right.\)
mà \(\widehat{IHD}=\widehat{KCE}\)
=> \(\widehat{BID}=\widehat{IKE}\) mà 2 góc có vị trí đồng vị
=> DI//EK
=> DEKI là hình thang
\(1,8=\dfrac{18}{10}=\dfrac{9}{5}\)