\(\sqrt{x+1}+\sqrt{x-2}=3\left(Đk:x\ge2\right)\)
\(x+1+x-2+2\sqrt{\left(x+1\right)\left(x-2\right)}=9\)
\(2\sqrt{x^2-2x+x-2}=10-2x\)
\(\sqrt{x^2-x-2}=5-x\)
\(x^2-x-2=x^2-2x+25\)
\(x=27\)
\(\sqrt{x+1}+\sqrt{x-2}=3\left(Đk:x\ge2\right)\)
\(x+1+x-2+2\sqrt{\left(x+1\right)\left(x-2\right)}=9\)
\(2\sqrt{x^2-2x+x-2}=10-2x\)
\(\sqrt{x^2-x-2}=5-x\)
\(x^2-x-2=x^2-2x+25\)
\(x=27\)
P=\(\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
Rút gọn biểu thức
\(a.\dfrac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(b.x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)
Tìm Min và Max(nếu có)
A=2x-\(\sqrt{x}\)
B=x+\(\sqrt{x}\)
C=1+\(\sqrt{2-x}\)
D=\(\sqrt{-x^2+2x+5}\)
E=\(\dfrac{1}{2x-\sqrt{x}+3}\)
F=\(\dfrac{1}{3-\sqrt{1-x^2}}\)
\(C=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\)
a) Rút gọn
b) Tính C với x=2-\(\sqrt{3}\); y=2+\(\sqrt{3}\)
13.\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+2}{\sqrt{x}+3}\)
giải các phương trình :
a) \(\sqrt{-x^2+x+4}=x-3\)
b)\(\sqrt{-2x^2+6}=x-1\)
c) \(\sqrt{x+2}=1+\sqrt{x-3}\)
Giải pt \(\frac{1}{\sqrt{x-1}+\sqrt{x-2}}+\frac{1}{\sqrt{x-2}+\sqrt{x-3}}+...+\frac{1}{\sqrt{x-9}+\sqrt{x-10}}=1\)
Rút gọn các biểu thức sau:
A = \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
C = \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\)
E = \(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
Giải phương trình:
a. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
b. \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)\(\)
c. \(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=1\)
rút gọn
B=\(\dfrac{x\sqrt{x}-8}{x-2\sqrt{x}}-\dfrac{x\sqrt{x}+8}{x+2\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)tìm đk để B rút gọn
C=\(\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)tìm x ∈Z để C ∈Z