Do \(A'B'//CD\Rightarrow A'\in\left(CDB'\right)\)
Gọi E, F lần lượt là trung điểm BC và AD \(\Rightarrow EF//CD\Rightarrow EF\in\left(P\right)\) do EF qua N
Gọi P là trung điểm BB' \(\Rightarrow EP//B'C\) (đường trung bình) \(\Rightarrow P\in\left(P\right)\)
Gọi Q là trung điểm AA' \(\Rightarrow QF//A'D\Rightarrow Q\in\left(P\right)\)
Trong mp (ABB'A'), nối AB' cắt PQ tại M
\(\Rightarrow\) M là trung điểm AB' theo t/c hình bình hành
\(\Rightarrow AM=\frac{1}{2}AB'=\frac{1}{2}DC'\Rightarrow\frac{AM}{DC'}=\frac{1}{2}\)