Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Cô Nàng Vui Vẻ
Xem chi tiết
Kuro Kazuya
29 tháng 12 2016 lúc 1:14

Bài 1a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\)

\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\) ( điều phải chứng minh )

Bài 1b)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho từng cặp ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\left(abc\right)^2}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\) (điều phải chứng minh )

Bài 1c) Ta có

\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(=>1+a+b\left(1+a\right)\left(1+c\right)\ge1^3+3.1^2.\sqrt[3]{abc}+3.1.\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(1+a+b+ab\right)\left(1+c\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c\left(1+a+b+ab\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c+ca+bc+abc\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>a+b+c+ab+bc+ca\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>a+b+c+ab+bc+ac\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\) (điều phải chứng minh )

Bình luận (0)
Kuro Kazuya
29 tháng 12 2016 lúc 1:56

Bài 2a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}.\frac{ab}{c}}=2\sqrt{a^2}=2a\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2\sqrt{b^2}=2b\end{matrix}\right.\)

\(=>2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(=>\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\) (điều phải chứng minh )

Bài 2b)

Chứng minh BĐT \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng BĐT Cô-si cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều phải chứng minh )

Ta có \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(=>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3\)

\(=>\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)

\(=>\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

\(=>\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(=>2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)

Áp dụng BĐT vừa chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(=>\left(b+c+a+c+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9 \) (Điều phải chứng minh )

Bình luận (0)
Nguyễn Thắng Tùng
23 tháng 4 2016 lúc 16:23

nhiều quá bạn à batngo

Bình luận (0)
Phan Thị Hồng Nhung
Xem chi tiết
ngonhuminh
17 tháng 2 2017 lúc 15:08

Bình phương ra bậc 2=>chọn PA Bình phương

Đk:(*) \(\left\{\begin{matrix}x\ne1\\x\ne-2\end{matrix}\right.\)

\(\left(\frac{5}{x+2}\right)^2< \left(\frac{10}{x-1}\right)^2\)

chia 5 hai vế Bình phương chuyển vế ta được\(\Leftrightarrow\frac{\left(x-1\right)^2-4\left(x+2\right)^2}{\left(x+2\right)^2\left(x-1\right)^2}< 0\Leftrightarrow\frac{\left(x^2-2x+1\right)-4\left(x^2+4x+4\right)}{\left(x+2\right)^2\left(x-1\right)^2}< 0\) (1)

do mẫu số \(\left[\left(x+2\right)\left(x-1\right)\right]^2>0\) với mọi x thỏa mãn (*)

\(\Leftrightarrow\left(x^2-2x+1\right)-4x^2-16x-16=-3x^2-18x-15< 0\)

chia hai vế cho (-3) ta được

\(x^2+6x+5>0\Leftrightarrow\left(x+1\right)\left(x+5\right)>0\Leftrightarrow\left[\begin{matrix}x>-1\\x< -5\end{matrix}\right.\)

Kết luận:No của BPT (1)là: \(\left[\begin{matrix}x< -5\\\left\{\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
Phương Anh
Xem chi tiết
Akai Haruma
1 tháng 3 2017 lúc 1:47

Lời giải:

\(27^{mx^3-2x^2+3x-2}=\frac{1}{9^{-mx^2-x+2}}\Leftrightarrow 3^{3(xm^3-2x^2+3x-2)}=3^{2(mx^2+x-2)}\)

\(\Leftrightarrow 3(mx^3-2x^2+3x-2)=2(mx^2+x-2)\)

\(\Leftrightarrow 3mx^3-x^2(2m+6)+7x-2=0\)

\(\Leftrightarrow (3x-2)(mx^2-2x+1)=0\)

Để PT ban đầu có ba nghiệm phân biệt thì \(mx^2-2x+1=0\) phải có hai nghiệm phân biệt khác \(\frac{2}{3}\). Khi đó:

\(\left\{\begin{matrix} m\neq 0\\ m(\frac{2}{3})^2-\frac{4}{3}+1\neq 0\\ \Delta' =1-m>0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m\neq 0\\ m\neq \frac{3}{4}\\ m<1\end{matrix}\right.\)

Đáp án D chính xác nhất, nhưng chưa quét hết nghiệm.

Bình luận (0)
hungdung
Xem chi tiết
Lightning Farron
11 tháng 12 2016 lúc 10:37

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

Bình luận (0)
Lien Le
Xem chi tiết
Akai Haruma
9 tháng 1 2017 lúc 21:09

Lời giải:

Ta có \(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3+b^3+c^3}{abc}\)

Để ý rằng \(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)=-3(-a)(-b)(-c)=3abc\)

\(\Rightarrow A=\frac{3abc}{abc}=3\)

Bình luận (0)
ngo van sang
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Trịnh Hà My
Xem chi tiết
soyeon_Tiểubàng giải
25 tháng 11 2016 lúc 22:23

Áp dụng bđt Cô si với 2 số dương là: \(\sqrt{\frac{b+c}{a}}\) và 1 ta có:

\(\left(\frac{b+c}{a}+1\right):2\ge\sqrt{\frac{b+c}{a}.1}\)

\(\Leftrightarrow\) \(\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\)

hay \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right)\)

Tương tự như trên ta cũng có:

\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right)\)

\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right)\)

Từ (1); (2) và (3) \(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra khi \(\begin{cases}\sqrt{\frac{b+c}{a}}=1\\\sqrt{\frac{a+c}{b}}=1\\\sqrt{\frac{a+b}{c}}=1\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{b+c}{a}=1\\\frac{a+c}{b}=1\\\frac{a+b}{c}=1\end{cases}\)\(\Leftrightarrow\begin{cases}b+c=a\\a+c=b\\a+b=c\end{cases}\)

\(\Rightarrow2.\left(a+b+c\right)=a+b+c\)\(\Rightarrow a+b+c=0\), mâu thuẫn với đề bài a; b; c là các số dương

Như vậy dấu "=" không xảy ra

Do đó, \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\left(đpcm\right)\)

 

Bình luận (12)
Isolde Moria
26 tháng 11 2016 lúc 11:20

Hic .

Định làm mak bj cúp điện nên nghỉ luôn

Ai ngờ dk vào câu hỏi hay

Bình luận (3)
Trung Rin
26 tháng 11 2016 lúc 20:46

<xxx>

Bình luận (0)
Guyo
Xem chi tiết
Mai Linh
19 tháng 1 2016 lúc 17:21

Ta có: 2SOAB = AB.OH = AB (vì OH = 1).

Vậy diện tích ∆OAB nhỏ nhất khi AB có độ dài ngắn nhất.

Vì AB = AH + HB mà AH.HB = OH2 = 1 nên AB có giá trị nhỏ nhất khi AH = HB tức ∆OAB vuông cân: OA = OB và 

             AB = 2AH = 2OH = 2.

             AB2 = 4 = 2OA2 = 2OH = OA = OB = √2.

Khi đó tọa độ của A, B là A(√2; 0) và B(0; √2).

Bình luận (0)
Nguyệt Hà
Xem chi tiết
Akai Haruma
9 tháng 1 2017 lúc 16:23

Lời giải:

Áp dụng BĐT AM-GM cho hai số $x,y$ dương ta có \(xy\leq \left(\frac{x+y}{2}\right)^2\Rightarrow \frac{4xy}{(x+y)^2}\leq 1\)

\(\Rightarrow P\leq \frac{4z}{x+y}+\frac{z^2}{(x+y)^2}+1\). Đến đây đặt \(\frac{z}{x+y}=t\). Vì \(x,y,z\in[1;2]\Rightarrow t\in[\frac{1}{4};1]\).

Khi đó \(P\leq t^2+4t+1\leq 1+4+1=6\)

Vậy $P_{max}=6$. Dấu $=$ xảy ra khi \(x=y=1;z=2\)

Bình luận (0)