Thực hiện phép tính:
(\(\dfrac{x}{y^2-xy}\)+\(\dfrac{y}{x^2-xy}\)):\(\dfrac{x^2+y^2}{xy^2+x^2y}\)
Thực hiện phép tính:
(\(\dfrac{x}{y^2-xy}\)+\(\dfrac{y}{x^2-xy}\)):\(\dfrac{x^2+y^2}{xy^2+x^2y}\)
\(A=\left(\dfrac{x}{y^2-xy}+\dfrac{y}{x^2-xy}\right):\left(\dfrac{x^2+y^2}{xy^2+x^2y}\right)\)
\(A=\left(\dfrac{x}{y\left(y-x\right)}+\dfrac{y}{x\left(x-y\right)}\right):\left(\dfrac{x^2+y^2}{xy\left(x+y\right)}\right)\\ \)
\(x,y\ne0;\left|y\right|\ne\left|x\right|\)
\(\)\(A=\left(\dfrac{x}{y\left(y-x\right)}+\dfrac{y}{x\left(x-y\right)}\right).\dfrac{xy\left(x+y\right)}{x^2+y^2}\)
\(A=\left(\dfrac{x}{y\left(y-x\right)}.\dfrac{xy}{x^2+y^2}+\dfrac{y}{x\left(x-y\right)}.\dfrac{xy}{x^2+y^2}\right)\left(x+y\right)\)
\(A=\left(\dfrac{x^2}{\left(y-x\right)\left(x^2+y^2\right)}+\dfrac{y^2}{\left(x-y\right)\left(x^2+y^2\right)}\right)\left(x+y\right)\)
\(A=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(y-x\right)\left(x^2+y^2\right)}\left(x+y\right)=\dfrac{-\left(x+y\right)^2}{x^2+y^2}\)
\(\)
\(\left(\dfrac{x}{-y\left(x-y\right)}+\dfrac{y}{x\left(x-y\right)}\right).\dfrac{xy\left(x+y\right)}{x^2+y^2}\)
\(=\dfrac{x^2-y^2}{-xy\left(x-y\right)}.\dfrac{xy\left(x+y\right)}{x^2+y^2}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)}{-xy\left(x-y\right)}.\dfrac{xy\left(x+y\right)}{x^2+y^2}\)
\(=\dfrac{\left(x+y\right)^2}{-x^2-y^2}\)
x-2/x-5 ÷ (x-2)^2/x^2-25
1÷(1-1/a)
(a+6/3a+9 - 1/a+3) ÷ a+2/27a
a: \(=\dfrac{x-2}{x-5}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x-2\right)^2}=\dfrac{x+5}{x-2}\)
b: \(=1:\dfrac{a-1}{a}=\dfrac{a}{a-1}\)
c: \(=\dfrac{a+6-3}{3\left(a+3\right)}\cdot\dfrac{27a}{a+2}=\dfrac{a+3}{3\left(a+3\right)}\cdot\dfrac{27a}{a+2}\)
\(=\dfrac{9a}{a+2}\)
P=(\(\dfrac{x+2}{x}\)-\(\dfrac{x}{x-2}\)+\(\dfrac{3}{x^2-2x}\)):\(\dfrac{5}{x^2-4}\)
a) Rút gọn P
b)Tìm x để P = \(x^2\)
c)Tìm x để |P| < P
a: \(P=\dfrac{x^2-4-x^2+3}{x\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{5}\)
\(=\dfrac{-x-2}{5x}\)
b: Để P=x2 thì \(5x^3+x+2=0\)
hay \(x\in\left\{-0.65\right\}\)
c: Để |P|<P thì \(x\in\varnothing\)
Thực hiện phép chia:
a) 3-3x/(1+x)2: 6x2-6/x+1
b)(1/x2+x-2-4x/3x): (1/x+x-2)
Các bạn hãy giúp mình nha.
Mình cảm ơn trước
\(\dfrac{3-3x}{\left(1+x\right)^2}:\dfrac{6x^2-6}{x+1}\)
\(=\dfrac{3\left(1-x\right)}{\left(x+1\right)^2}:\dfrac{6\left(x^2-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}:\dfrac{6\left(x+1\right)\left(x-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-3\left(x-1\right)\left(x+1\right)}{6\left(x+1\right)^3\left(x-1\right)}=\dfrac{-3\left(x+1\right)}{6\left(x+1\right)\left(x+1\right)^2}=\dfrac{-3}{6\left(x+1\right)^2}=\dfrac{-1}{2\left(x+1\right)^2}\)
b) Bạn có thể viết kiểu latex được không ạ ?
thực hiện phép chia x^3-5x-1:x+2
Ta có: \(x^3-5x-1:x+2\)
\(=\dfrac{x^3+2x^2-2x^2-4x-x-2+3}{x+2}\)
\(=\dfrac{x^2\left(x+2\right)-2x\left(x+2\right)-\left(x+2\right)+3}{x+2}\)
\(=\dfrac{\left(x+2\right)\left(x^2-2x-1\right)}{x+2}+\dfrac{3}{x+2}\)
\(=x^2-2x-1+\dfrac{3}{x+2}\)
A= \(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x-1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
a/ rút gọn A
b/ tìm x thuộc Z để A nguyên
c/ tính A vs x = -2, x = -3
d/ tìm x để A = 1
\(\left(\dfrac{3x}{1-2x}+\dfrac{2x}{2x+1}\right):\dfrac{2x^2+5x}{1-4x+4x^2}\)
Ta có: \(\left(\dfrac{3x}{1-2x}+\dfrac{2x}{2x+1}\right):\dfrac{2x^2+5x}{1-4x+4x^2}\)
\(=\left(\dfrac{3x\left(2x+1\right)}{\left(1-2x\right)\left(1+2x\right)}+\dfrac{2x\left(1-2x\right)}{\left(1-2x\right)\left(1+2x\right)}\right):\dfrac{2x^2+5x}{\left(2x-1\right)^2}\)
\(=\dfrac{6x^2+3x+2x-4x^2}{\left(1-2x\right)\left(1+2x\right)}:\dfrac{2x^2+5x}{\left(1-2x\right)^2}\)
\(=\dfrac{2x^2+5x}{\left(1-2x\right)\left(1+2x\right)}:\dfrac{2x^2+5x}{\left(1-2x\right)^2}\)
\(=\dfrac{x\left(2x+5\right)}{\left(1-2x\right)\left(1+2x\right)}\cdot\dfrac{\left(1-2x\right)^2}{x\left(2x+5\right)}\)
\(=\dfrac{1-2x}{1+2x}\)
A=(\(\dfrac{x}{\left(x-2\right)\left(x+2\right)}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{2}{x-2}\)):(1-\(\dfrac{x}{x+2}\))
A = (\(\dfrac{x}{\left(x-2\right)\left(x+2\right)}\) + \(\dfrac{1}{x+2}\) - \(\dfrac{2}{x-2}\)) : (1 - \(\dfrac{x}{x+2}\))
= (\(\dfrac{x}{\left(x-2\right)\left(x+2\right)}\) + \(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\) - \(\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)) : (\(\dfrac{x+2}{x+2}\) - \(\dfrac{x}{x+2}\))
= \(\dfrac{x+x-2-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\) : \(\dfrac{x+2-x}{x+2}\)
= \(\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\) : \(\dfrac{2}{x+2}\)
= \(\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\) . \(\dfrac{x+2}{2}\)
= \(\dfrac{-3}{x-2}\)
\(P=\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
\(=\left(\dfrac{-x-2}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
a) Đkxđ: \(x-2\ne0\Leftrightarrow x\ne2\)
\(x+2\ne0\Leftrightarrow x\ne-2\)
\(2-x\ne0\Leftrightarrow x\ne2\)
\(x-3\ne0\Leftrightarrow x\ne3\)
b) \(P=\left(\dfrac{-x-2}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\left(\dfrac{-\left(x+2\right)\left(x+2\right)+4x^2+\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)
\(=\dfrac{-x\left(-x^2-4x-4+4x^2+x^2-4x+4\right)}{\left(x+2\right)\left(x-3\right)}\)
\(=\dfrac{-x\left(4x^2-8x\right)}{\left(x+2\right)\left(x-3\right)}\)
Chắc là mình làm sai rồi. Mình không làm nữa :v. Sorry bạn nha :<<
Bài 8:
a) ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)
b) Ta có: \(P=\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
\(=\left(\dfrac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}-\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}-\dfrac{\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{x^2+4x+4-4x^2-\left(x^2-4x+4\right)}{\left(2-x\right)\left(2+x\right)}:\dfrac{x-3}{x\left(2-x\right)}\)
\(=\dfrac{-3x^2+4x+4-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{x\left(2-x\right)}{x-3}\)
\(=\dfrac{-4x^2+8x}{2+x}\cdot\dfrac{x}{x-3}\)
\(=\dfrac{x\left(-4x^2+8x\right)}{\left(x+2\right)\left(x-3\right)}\)
c) Ta có: |x-5|=2
\(\Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Thay x=7 vào biểu thức \(P=\dfrac{x\left(-4x^2+8x\right)}{\left(x+2\right)\left(x-3\right)}\), ta được:
\(P=\dfrac{7\cdot\left(-4\cdot7^2+8\cdot7\right)}{\left(7+2\right)\left(7-3\right)}=\dfrac{7\cdot\left(-4\cdot28+56\right)}{9\cdot4}\)
\(\Leftrightarrow P=\dfrac{7\cdot\left(-112+56\right)}{36}=\dfrac{7\cdot\left(-56\right)}{36}=\dfrac{-98}{9}\)
Vậy: Với |x-5|=2 thì \(P=-\dfrac{98}{9}\)