\(\dfrac{3-3x}{\left(1+x\right)^2}:\dfrac{6x^2-6}{x+1}\)
\(=\dfrac{3\left(1-x\right)}{\left(x+1\right)^2}:\dfrac{6\left(x^2-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}:\dfrac{6\left(x+1\right)\left(x-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-3\left(x-1\right)\left(x+1\right)}{6\left(x+1\right)^3\left(x-1\right)}=\dfrac{-3\left(x+1\right)}{6\left(x+1\right)\left(x+1\right)^2}=\dfrac{-3}{6\left(x+1\right)^2}=\dfrac{-1}{2\left(x+1\right)^2}\)
b) Bạn có thể viết kiểu latex được không ạ ?