Cho A=\(\dfrac{10}{a^m}+\dfrac{10}{a^n}\) và B=\(\dfrac{11}{a^m}+\dfrac{9}{a^n}\) với a,m,n là các số tự nhiên khác 0 so sánh A và B
Cho A=\(\dfrac{10}{a^m}+\dfrac{10}{a^n}\) và B=\(\dfrac{11}{a^m}+\dfrac{9}{a^n}\) với a,m,n là các số tự nhiên khác 0 so sánh A và B
\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}\)
\(=\dfrac{10a^n+9a^m+a^m}{a^ma^n}\)
\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}\)
\(=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\)
+ Nếu m > n thì am > an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}>\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A > B
+ Nếu m < n thì am < an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}< \dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A < B
+ Nếu m = n thì am = an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A = B
So sánh 2 số A và B
1) A= 1/7.9 vs B= 1/7- 1/9
2) A= 15/301 vs B= 25/499
3) A= 5.6/9.25 và
B= 18.4- 18/8.9/7.9
1: \(B=\dfrac{1}{7}-\dfrac{1}{9}=\dfrac{2}{63}>\dfrac{1}{7\cdot9}=A\)
2: \(A=\dfrac{15}{301}< \dfrac{15}{300}=\dfrac{1}{20}=\dfrac{25}{500}< \dfrac{25}{499}\)
cho M= 1/15 + 1/105 + 1/315+...+ 1/1977. So sanh M vs 12.
Cho M= 1/5 +1/105 +1/315+...+1/9177. So sanh M vs 12
so sánh
a.-76/75vs-121/122
b.199/222vs457/460
c.499/99vs999/199
d.-495/493vs-789/787
e.A=15^6+1/15^17+1vsB=15^15+1/15^16+1
f.C=100^100+1/100^90+1vsD=100^99+1/100^89+1
Ối trời !Sao mà dài thế này
Làm sao làm cho nổi
cho A= 1/3+1/6+1/10+....+1/4950.So sánh A với 1/4
\(A=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{9900}\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\cdot\dfrac{49}{100}=\dfrac{98}{100}>\dfrac{1}{4}\)
Chứng tỏ:
1/26+1/27+...+1/49+1/50=99/50-97/49+...+7/4-5/3+3/2-1
Xét vế phải :
\(VT=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
\(\text{Nhầm xíu , cho sửa lại nhé}\)
\(\text{Xét vế phải :}\)
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
So sánh : \(\dfrac{n+1}{n+2}\)và \(\dfrac{n}{n+3}\)
So sánh các phân số sau:
a) 3/4 và 13/16
b) 4/-5 và -17/20
c) -15/16 và 1/4
d) 10/11 và 11/12
bài này ta quy đồng mẫu rồi so sánh là xong
Cho A=\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
CMR: a) A>\(\dfrac{7}{12}\)
b) A>\(\dfrac{5}{8}\)
a. ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
b, A =(1/101+1/102+....+1/150)+(1/151+1/152+.....+1/200)
A>1/150.50+1/200.50=1/3+1/4=7/12
b tách A thành bốn nhóm rồi cũng làm như trên,ta có
A>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8
=107/210+1/8>1/2+1/8=5/8