b) b) 121+128+136+...+2s(s+1)=29
b) b) 121+128+136+...+2s(s+1)=29
Tìm giá trị biểu thức:
A=2sin30o-3cos45o+4cos60o-5sin120o+6cos150o
B=3sin245o-2cos245o-4sin250o-4cos250o+5tan255o cot55o
giải và biện luận pt : \(\left(m^2+2\right)x=x-2m\) ( m là tham số )
phương trình \(\Leftrightarrow\) \(\left(m^2+1\right)x=-2m\) \(\Leftrightarrow\) \(x=-\frac{2m}{m^2+1}\)
đây là nghiệm duy nhất cần tìm
x^6+6x^5+17x^4+40x^3+62x^2+69x+76=0
sắp thi học kì rồi mà mãi ko ôn
Giải phương trình :
\(\sqrt{x^2-6x+6}=2x-1\)
\(\sqrt{x^2-6x+6}=2x-1\) (1)
\(\Leftrightarrow\) \(\begin{cases}2x-1\ge0\\x^2-6x+6=\left(2x-1\right)^2\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x\ge\frac{1}{2}\\3x^2+2x-5=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge\frac{1}{2}\\x=1;x=-\frac{5}{3}\end{cases}\)
\(\Leftrightarrow x=1\)
Vậy phương trình đã cho có nghiệm \(x=1\)
Giải phương trình :
\(\left(x^2-3x+2\right)\left(x^2-1\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+4\right)=0\)
<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1
⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0
<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1
\(\Leftrightarrow\) \(\begin{cases}x^2-3x+2=0\\x^2-1=0\\x^2+5x+4=0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x=1\\x=-1\\x=-1\end{cases}\) hoặc \(\begin{cases}x=2\\x=1\\x=-4\end{cases}\) \(\Leftrightarrow\) \(x\in\left\{-4;-1;1;2\right\}\)
Vậy tập nghiệm của phương trình đã cho là T=\(\left\{-4;-1;1;2\right\}\)
cho pt : \(m^2x=9x+m^2-4m+3\left(1\right)\)
a) tìm m để pt (1 ) có tập nghiệm là R
b) tìm m \(\in Z\) để pt (1) có duy nhất nghiệm và nghiệm đó là số nguyên
a) \(\left(1\right)\) \(\Leftrightarrow\) \(\left(m^2-9\right)x=m^2-4m+3\)\(=\left(m-1\right)\left(m-3\right)\)
Phương trình \(\left(1\right)\) có tập nghiệm là R
\(\Leftrightarrow\) \(m^2-9=\left(m-1\right)\left(m-3\right)=0\) \(\Leftrightarrow m=3\)
b) Phương trình có nghiệm duy nhất : \(\Leftrightarrow m^2-9\ne0\) \(\Leftrightarrow m\ne\pm3\)
Khi đó nghiệm của phương trình : \(x=\frac{m-1}{m-3}=1-\frac{4}{m+3}\)
Do đó \(x\in Z\) \(\Leftrightarrow\frac{4}{m+3}\in Z\) \(\Leftrightarrow m+3\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow m\in\left\{-7;-5;-4;-2;-1;1\right\}\)
Giải phương trình :
\(\left(\frac{8}{3}\right)^{x^2-x+1}\left(\frac{3}{5}\right)^{2x^2-3x+2}\left(\frac{5}{7}\right)^{3x^2-4x+3}\left(\frac{7}{2}\right)^{4x^2-5x+4}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)
\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)
Lấy Logarit cơ số 2 hai vế, ta được :
\(2\left(x-1\right)^2=\left(\log_2105\right)x\)
\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)
\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)
Vậy phương trình đã cho có 2 nghiệm
Tính giá trị biểu thức sau (được phép sử dụng máy tính):
S = 1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 97.98.99.100
5S = (1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 97.98.99.100). 5
5S = 1.2.3.4(5 - 0) + 2.3.4.5(6 - 1) + 3.4.5.6(7 - 2) + 4.5.6.7(8 - 3) + ... + 98.99.100.101(102 - 97)
5S = 1.2.3.4.5 + 2.3.4.5.6 - 1.2.3.4.6 + 3.4.5.6.7 - 2.3.4.5.6 + 4.5.6.7.8 - 3.4.5.6.7 + ... + 98.99.100.101.102 - 97.98.99.100.101
5S = 1.2.3.4.5 - 1.2.3.4.5 + 2.3.4.5.6 - 2.3.4.5.6 + 3.4.5.6.7 - 3.4.5.6.7 + ... + 97.98.99.100.101 - 97.98.99.100.101 + 98.99.100.101.102
5S = 98.99.100.101.102
\(\Rightarrow S=\frac{98.99.100.101.102}{5}\)
Sử dụng máy tính: CT:
(97.98.99.100.101) : 5 =...
Công thức của mk chắc chắn đúng vì mk đã làm rất nhìu dạng bài này rồi! Bạn tham khảo nhé!