§2. Phương trình quy về phương trình bậc nhất, bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thị Lê Anh
Xem chi tiết
Đặng Minh Quân
9 tháng 5 2016 lúc 11:06

\(\Leftrightarrow2^{x^2-x}.2^{2x}-4.2^{^{x^2-x}}-2^{2x}+4=0\)

\(\Leftrightarrow2^{x^2-x}\left(2^{2x}-4\right)-\left(2^{2x}-4\right)=0\)

\(\Leftrightarrow\left(2^{2x}-4\right)\left(2^{x^2-x}-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2^{2x}=4\\2^{x^2-x}=1\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=0\end{array}\right.\)

Đoàn Thị Linh Chi
1 tháng 5 2016 lúc 16:32

hihi giống nhau wa. hjhj

Bùi Anh Tuấn
1 tháng 5 2016 lúc 16:37

me too

 

Nagisa Motomiya
1 tháng 5 2016 lúc 22:45

ừm me too

Bùi Giao Hòa
Xem chi tiết
Phan Huỳnh Nhật Anh
9 tháng 5 2016 lúc 11:55

Nhận xét x = 0 không là nghiệm của phương trình. Chia 2 vế của phương trình cho \(x^2\ne0\) ta được :

\(\left(x^2+3x+1\right)\left(x^2-x+1\right)=5x^2\Leftrightarrow\left(x+\frac{1}{x}+3\right)\left(x+\frac{1}{x}-1\right)=5\)

Đặt \(t=x+\frac{1}{x}\) ta được :

\(\left(x^2+3x+1\right)\left(x^2-x+1\right)=5x^2\Leftrightarrow\left(t+3\right)\left(t-1\right)=5\)

                                                   \(\Leftrightarrow t^2+2t-8=0\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-4\end{array}\right.\)

Do vậy \(\left(x^2+3x+1\right)\left(x^2-x+1\right)=5x^2\Leftrightarrow\left[\begin{array}{nghiempt}x+\frac{1}{x}=2\\x+\frac{1}{x}=-4\end{array}\right.\)

                                                               \(\Leftrightarrow\left[\begin{array}{nghiempt}x^2-2x+1=0\\x^2+4x+1=0\end{array}\right.\)

                                                              \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\pm\sqrt{3}\end{array}\right.\)

Vậy phương trình đã cho có 3 nghiệm

 

Đặng Minh Triều
9 tháng 5 2016 lúc 12:39

Đặt t=x2+1 (t>0)

PT trên trở thành: (t+3x)(t-x)=5x2

<=>t2+2tx-8x2=0

<=>t2-2tx+4tx-8x2=0

<=>t.(t-2x)+4x.(t-2x)=0

<=>(t+4x)(t-2x)=0

<=>t=-4x hoặc t=2x

*t=-4x =>x2+1=-4x <=>x2-4x+1=0(1)

\(\Delta=12>0\Rightarrow\sqrt{\Delta}=2\sqrt{3}\)

=>PT (1) có 2 nghiệm phân biệt: \(x_1=2+\sqrt{3};x_2=2-\sqrt{3}\)

*t=2x =>x2+1=2x <=>x2-2x+1=0 <=> (x-1)2=0 <=>x=1

Vậy PT có tập nghiệm là: \(S=\left\{2+\sqrt{3};2-\sqrt{3};1\right\}\)

Bắc Băng Dương
Xem chi tiết
Nguyễn Bình Nguyên
27 tháng 2 2016 lúc 8:30

\(\Leftrightarrow\)  \(\left(x^2+3x-4\right)^2+4\left(x^2+3x-4\right)+4=x^2+4x+4\)

\(\Leftrightarrow\) \(\left(x^2+3x-2\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\) \(\begin{cases}x^2+3x-2=x+2\\x^2+3x-2=-x+2\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}x^2+2x-4=0\\x^2+4x=0\end{cases}\)

\(\Leftrightarrow\)  \(x\in\left\{-1\pm\sqrt{5};-4;0\right\}\)

Vậy phương trình đã cho có tập nghiệm T =\(\left\{-1\pm\sqrt{5};-4;0\right\}\)

Nguyễn Văn Tài
Xem chi tiết
Mọt Sách
21 tháng 3 2016 lúc 11:53

Điều kiện:  x ≥ 0

PT : \(\Leftrightarrow x^2-1-7x+7+2-2\sqrt{x}=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(x\sqrt{x}+x-6\sqrt{x}-8\right)=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}-1\right)\left(x\sqrt{x}+8+x-6\sqrt{x}-16\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4+\sqrt{x}-8\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\left(x-\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\)\(\text{[}\begin{matrix}\sqrt{x}-1=0\\x-\sqrt{x}-4=0\end{matrix}\)\(\Leftrightarrow\text{[}\begin{matrix}x=1\\x=\left(\frac{1+\sqrt{17}}{2}\right)^2=\frac{9+\sqrt{17}}{2}\end{matrix}\)                               Kết luận

Mai Nguyên Khang
Xem chi tiết
Nguyễn Trọng Nghĩa
26 tháng 2 2016 lúc 12:05

\(\sqrt{x^2-6x+6}=2x-1\) (1)

\(\Leftrightarrow\) \(\begin{cases}2x-1\ge0\\x^2-6x+6=\left(2x-1\right)^2\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}x\ge\frac{1}{2}\\3x^2+2x-5=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge\frac{1}{2}\\x=1;x=-\frac{5}{3}\end{cases}\) 

\(\Leftrightarrow x=1\)

Vậy phương trình đã cho có nghiệm \(x=1\)

Mai Linh
Xem chi tiết
Đặng Minh Triều
26 tháng 2 2016 lúc 13:20

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+4\right)=0\)

<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1

Lê Minh Đức
26 tháng 2 2016 lúc 19:25

⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0

<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1

Nguyễn Bình Nguyên
27 tháng 2 2016 lúc 8:18

\(\Leftrightarrow\)  \(\begin{cases}x^2-3x+2=0\\x^2-1=0\\x^2+5x+4=0\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}x=1\\x=-1\\x=-1\end{cases}\)  hoặc \(\begin{cases}x=2\\x=1\\x=-4\end{cases}\)  \(\Leftrightarrow\)   \(x\in\left\{-4;-1;1;2\right\}\)

Vậy tập nghiệm của phương trình đã cho là T=\(\left\{-4;-1;1;2\right\}\)

≧✯◡✯≦✌
Xem chi tiết
Mọt Sách
2 tháng 3 2016 lúc 13:52

a)  \(\left(1\right)\)    \(\Leftrightarrow\)      \(\left(m^2-9\right)x=m^2-4m+3\)\(=\left(m-1\right)\left(m-3\right)\)

Phương trình  \(\left(1\right)\) có tập nghiệm là R

             \(\Leftrightarrow\)      \(m^2-9=\left(m-1\right)\left(m-3\right)=0\)   \(\Leftrightarrow m=3\)

b) Phương trình có nghiệm duy nhất :  \(\Leftrightarrow m^2-9\ne0\)    \(\Leftrightarrow m\ne\pm3\)

Khi đó nghiệm của phương trình :  \(x=\frac{m-1}{m-3}=1-\frac{4}{m+3}\)

Do đó \(x\in Z\) \(\Leftrightarrow\frac{4}{m+3}\in Z\)               \(\Leftrightarrow m+3\in\left\{\pm1;\pm2;\pm4\right\}\)

                                                   \(\Leftrightarrow m\in\left\{-7;-5;-4;-2;-1;1\right\}\)

Nguyễn Khắc Vinh
2 tháng 3 2016 lúc 14:48

khó

van
18 tháng 3 2016 lúc 20:08

Bài này zễ mè bạn lolang

Đào Thành Lộc
Xem chi tiết
Phạm Thái Dương
6 tháng 5 2016 lúc 13:49

\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)

\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)

Lấy Logarit cơ số 2 hai vế, ta được :

\(2\left(x-1\right)^2=\left(\log_2105\right)x\)

\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)

\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)

Vậy phương trình đã cho có 2 nghiệm