Bài 9. Hình đồng dạng

Hoạt động 1 (SGK Cánh Diều trang 86)

Hướng dẫn giải

Từ điểm O, ‘‘phóng to’’ ba lần tam giác ABC, ta sẽ nhận được tam giác A’B’C’.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Cánh Diều trang 86)

Hướng dẫn giải

Từ điểm O, ‘‘thu nhỏ’’ hai lần tứ giác ABCD, ta sẽ nhận được tứ giác A’B’C’D’.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Cánh Diều trang 87)

Hướng dẫn giải

Thực hiện theo hướng dẫn của GV và SGK.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 4 (SGK Cánh Diều trang 88)

Hướng dẫn giải

a: Xét ΔODC có D''C''//DC

nên \(\dfrac{D''C''}{DC}=\dfrac{OD''}{OD}=\dfrac{OC''}{OC}=\dfrac{3}{9}=\dfrac{1}{3}\)(1)

Xét ΔOAB có A''B"//AB

nên \(\dfrac{A"B"}{AB}=\dfrac{OA"}{OA}=\dfrac{OB"}{OB}=\dfrac{3}{9}=\dfrac{1}{3}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{OD"}{OD}=\dfrac{OC"}{OC}=\dfrac{OA"}{OA}=\dfrac{OB"}{OB}\)

mà A"A, B"B, C"C, D"D đều đi qua điểm O

nên hai hình hộp chữ nhật A"B"C"D" và ABCD đồng dạng phối cảnh với nhau

b: ta có: A'B'=C'D'=3cm

A"B"=C"D"=3cm

Do đó: A"B"=C"D"=A'B'=C'D'(3)

ta có: A'D'=B'C'=2cm

A"D"=B"C"=2cm

Do đó: A'D'=B'C'=A"D"=B"C"(4)

Từ (3),(4) suy ra hai hình hộp chữ nhật A"B"C"D" và A'B'C'D' bằng nhau

 

 

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Bài 1 (SGK Cánh Diều trang 89)

Hướng dẫn giải

a) Hình thoi A'B'C'D' bằng hình thoi A''B''C''D''.

b) Ta thấy hình thoi A''B''C''D'' đồng dạng phối cảnh với hình thoi ABCD 

Mà hình thoi A'B'C'D' bằng hình thoi A''B''C''D''

\( \Rightarrow \)Hình thoi A'B'C'D' đồng dạng với hình thoi ABCD.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Cánh Diều trang 89)

Hướng dẫn giải

a) Vì tam giác A'B'C' là hình đồng dạng phối cảnh của tam giác ABC nên \(\Delta A'B'C' \backsim \Delta ABC\).

\(\begin{array}{l} \Rightarrow \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{C'A'}}{{CA}} = 3\\ \Rightarrow \frac{{A'B'}}{3} = \frac{{B'C'}}{6} = \frac{{C'A'}}{5} = 3\\ \Rightarrow A'B' = 9,\,\,B'C' = 18,\,\,C'A' = 15\end{array}\)

b) Vì tam giác A”B”C” là hình đồng dạng phối cảnh của tam giác ABC nên \(\Delta A''B''C'' \backsim \Delta ABC\).

\(\begin{array}{l} \Rightarrow \frac{{A''B''}}{{AB}} = \frac{{B''C''}}{{BC}} = \frac{{C''A''}}{{CA}} = 3\\ \Rightarrow \frac{{A''B''}}{3} = \frac{{B''C''}}{6} = \frac{{C''A''}}{5} = 3\\ \Rightarrow A''B'' = 9,\,\,B''C'' = 18,\,\,C''A'' = 15\end{array}\)

c) Ta có:

\(\begin{array}{l}A'B' = A''B'' = 9\\B'C' = B''C'' = 18\\C'A' = C''A'' = 15\end{array}\)

 \( \Rightarrow \Delta A'B'C' = \Delta A''B''C''\)(c-c-c)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Cánh Diều trang 89)

Hướng dẫn giải

a) Vì \(\frac{{AB''}}{{AB}} = \frac{{AC''}}{{AC}} = \frac{{AD''}}{{AD}}\) nên hình chữ nhật AB”C”D” đồng dạng phối cảnh với hình chữ nhật ABCD.

b) Ta có: \(\frac{{A'B'}}{{B'C'}} = \frac{{AB}}{{BC}} \Rightarrow \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}\)

Mà \(\frac{{AB''}}{{AB}} = \frac{{B'C'}}{{BC}} \Rightarrow A'B' = AB''\)

Ta có hình chữ nhật AB”C”D” đồng dạng phối cảnh với hình chữ nhật ABCD

\( \Rightarrow \frac{{B''C''}}{{BC}} = \frac{{AB''}}{{AB}}\)

Mà \(\frac{{AB''}}{{AB}} = \frac{{B'C'}}{{BC}} \Rightarrow \frac{{B''C''}}{{BC}} = \frac{{B'C'}}{{BC}} \Rightarrow B''C'' = B'C'\)

c) Ta có: \(\frac{{A'B'}}{{B'C'}} = \frac{{AB}}{{BC}} \Rightarrow \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}\)

Vậy hình chữ nhật ABCD đồng dạng với hình chữ nhật A’B’C’D’.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)