Trong Hình 94, hình chữ nhật ABCD có AB = 9 cm, AD = 6 cm; hình chữ nhật A’B’C’D’ có A’B’ = 3 cm, A’D’ = 2 cm; hình chữ nhật A’’B’’C’’D’’ có A’’B’’ = 3 cm, A’’D’’ = 2 cm. Quan sát Hình 94 và cho biết:
a) Hai hình chữ nhật A’’B’’C’’D’’, ABCD có đồng dạng phối cảnh hay không.
b) Hai hình chữ nhật A’B’C’D’, A’’B’’C’’D’’ có bằng nhau hay không.
a: Xét ΔODC có D''C''//DC
nên \(\dfrac{D''C''}{DC}=\dfrac{OD''}{OD}=\dfrac{OC''}{OC}=\dfrac{3}{9}=\dfrac{1}{3}\)(1)
Xét ΔOAB có A''B"//AB
nên \(\dfrac{A"B"}{AB}=\dfrac{OA"}{OA}=\dfrac{OB"}{OB}=\dfrac{3}{9}=\dfrac{1}{3}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{OD"}{OD}=\dfrac{OC"}{OC}=\dfrac{OA"}{OA}=\dfrac{OB"}{OB}\)
mà A"A, B"B, C"C, D"D đều đi qua điểm O
nên hai hình hộp chữ nhật A"B"C"D" và ABCD đồng dạng phối cảnh với nhau
b: ta có: A'B'=C'D'=3cm
A"B"=C"D"=3cm
Do đó: A"B"=C"D"=A'B'=C'D'(3)
ta có: A'D'=B'C'=2cm
A"D"=B"C"=2cm
Do đó: A'D'=B'C'=A"D"=B"C"(4)
Từ (3),(4) suy ra hai hình hộp chữ nhật A"B"C"D" và A'B'C'D' bằng nhau