Bài 9. Hình đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho tam giác ABC có \(AB = 3,{\rm{ }}BC = 6,{\rm{ }}CA = 5\). Cho O, I là hai điểm phân biệt. 

a) Giả sử tam giác A'B'C' là hình đồng dạng phối cảnh của tam giác ABC với điểm O là tâm đồng dạng phối cảnh, tỉ số \(\frac{{A'B'}}{{AB}} = 3\). Hãy tìm độ dài các cạnh của tam giác A'B'C'.

b) Giả sử tam giác A''B''C'' là hình đồng dạng phối cảnh của tam giác ABC với điểm I là tâm đồng dạng phối cảnh, tỉ số \(\frac{{A'B'}}{{AB}} = 3\). Hãy tìm độ dài các cạnh của tam giác A''B''C''.

c) Chứng minh \(\Delta A'B'C' = \Delta A''B''C''\)

Chú ý: Hai tam giác cùng là hình đồng dạng phối cảnh tỉ số k (tâm đồng dạng phối cảnh có thể khác nhau) của một tam giác luôn bằng nhau

Hà Quang Minh
11 tháng 1 2024 lúc 23:48

a) Vì tam giác A'B'C' là hình đồng dạng phối cảnh của tam giác ABC nên \(\Delta A'B'C' \backsim \Delta ABC\).

\(\begin{array}{l} \Rightarrow \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{C'A'}}{{CA}} = 3\\ \Rightarrow \frac{{A'B'}}{3} = \frac{{B'C'}}{6} = \frac{{C'A'}}{5} = 3\\ \Rightarrow A'B' = 9,\,\,B'C' = 18,\,\,C'A' = 15\end{array}\)

b) Vì tam giác A”B”C” là hình đồng dạng phối cảnh của tam giác ABC nên \(\Delta A''B''C'' \backsim \Delta ABC\).

\(\begin{array}{l} \Rightarrow \frac{{A''B''}}{{AB}} = \frac{{B''C''}}{{BC}} = \frac{{C''A''}}{{CA}} = 3\\ \Rightarrow \frac{{A''B''}}{3} = \frac{{B''C''}}{6} = \frac{{C''A''}}{5} = 3\\ \Rightarrow A''B'' = 9,\,\,B''C'' = 18,\,\,C''A'' = 15\end{array}\)

c) Ta có:

\(\begin{array}{l}A'B' = A''B'' = 9\\B'C' = B''C'' = 18\\C'A' = C''A'' = 15\end{array}\)

 \( \Rightarrow \Delta A'B'C' = \Delta A''B''C''\)(c-c-c)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết