Ta có:
\(x\left(y+z\right)=32\Rightarrow xy+xz=32\)
\(y\left(x+z\right)=27\Rightarrow xy+yz=27\)
\(z\left(y+x\right)=yz+xz=35\)
\(\Rightarrow xy+xz+xy+yz+yz+xz=32+27+35\)
\(\Rightarrow2\left(xy+yz+zx\right)=94\)
\(\Rightarrow xy+yz+zx=47\)
Mà \(xy+yz=27\)
\(\Rightarrow27+zx=47\)
\(\Rightarrow zx=20\)
Tương tự ta được : \(xy=12\) ; \(yz=15\)
\(\Rightarrow zx.xy=20.12\)
\(\Rightarrow x^2.yz=240\)
Mà \(yz=15\)
\(\Rightarrow x^2=240:15\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x=\pm4\)
+)Nếu \(x=4\Rightarrow xyz=4.yz=4.15=60\)
+)Nếu \(x=-4\Rightarrow xyz=-4.yz=-4.15=-60\)
Vậy \(xyz=60;xyz=-60\)