Ta có:
\(x:y:z=4:5:6\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\) và \(x^2-2y^2+z^2=18\)
\(\Leftrightarrow\dfrac{x}{4}=\dfrac{x^2}{4^2}=\dfrac{x^2}{16}\)
\(\Leftrightarrow\dfrac{y}{5}=\dfrac{2y^2}{2.5^2}=\dfrac{2y^2}{50}\)
\(\Leftrightarrow\dfrac{z}{6}=\dfrac{z^2}{6^2}=\dfrac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{16}=\dfrac{2y^2}{50}=\dfrac{z^2}{36}=\dfrac{x^2-2y^2+z^2}{16-50+36}=\dfrac{18}{2}=9\)
\(\Leftrightarrow\dfrac{x^2}{16}=9\Rightarrow x=12\)
\(\Leftrightarrow\dfrac{2y^2}{50}=9\Rightarrow y=15\)
\(\Leftrightarrow\dfrac{z^2}{36}=9\Rightarrow z=18\)
Vậy ...