y=f(x)=\(\frac{\sqrt{2-x}+\sqrt{2+x}}{x^2}\)
HSXĐ:\(\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\2+x\ge0\\x^2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge-2\\x\ne0\end{matrix}\right.\) \(\Rightarrow-2\le x\le2\)
TXĐ: D=[-2 :2]\{0} (đối xứng)
\(\forall x\in D\) thì \(-x\in D\)
Ta có :f(-x)=\(\frac{\sqrt{2-\left(-x\right)}+\sqrt{2+\left(-x\right)}}{-x^2}\)
=\(\frac{\sqrt{2+x}+\sqrt{2-x}}{-x^2}\) =\(-\frac{\sqrt{2+x}+\sqrt{2-x}}{x^2}\) = \(-\) f(x)
Vậy hàm số lẻ trên D