Chứng minh rằng biểu thức sau đây có giá trị không phải là một số tự nhiên.
\(A=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
1.Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^3.4^2}+...+\frac{19}{9^2.10^2}< 1\)
2.Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Làm nhanh giúp mình nhé mọi người !!!
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\) < \(\frac{3}{4}\)
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}>\frac{2013}{4030}\)
Câu 1:Tìm x biết:
a, \(\frac{x+2}{327}\)+\(\frac{x+3}{326}\)+\(\frac{x+4}{325}\)+\(\frac{x+5}{324}\)+\(\frac{x+349}{5}\)=0
b,\(\left|5x-3\right|\)\(\ge\)7
Câu 2: Tính tổng S=(-1/7)0+(-1/7)1+(-1/7)2+...+(-1/7)2007
Câu 3: a, Chứng minh:\(\frac{1}{2!}\)+\(\frac{2}{3!}\)+\(\frac{3}{4!}\)+...+\(\frac{99}{100!}\)<1
b, Chứng minh rằng mọi số nguyên dương thì 3n+2-2n+2+3n-2n chia hết cho 10.
Cố lên!
Cho A = 1+ \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}\) .
Chứng minh rằng: A < 1\(\frac{3}{4}\)
Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+......\frac{100}{3^{100}}< \frac{3}{4}\)
Cho A = 1+ \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}\) .
Chứng minh rằng: A < 1\(\frac{3}{4}\)
Chứng minh biểu thức không phụ thuộc vào x:
\(\left(\frac{3x}{x^2-4}-\frac{1}{x-2}-\frac{2}{x+2}\right):\left(1+\frac{x^2+4}{4-x^2}\right)\)
Giusp mình nha, mình đag cần gấp