Cho A = 1+ \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}\) .
Chứng minh rằng: A < 1\(\frac{3}{4}\)
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A<0,1 hãy tổng quát bài toán
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A <0,1 hãy tổng quát bài toán
Chứng minh rằng:
B=1-\(\frac{1}{2^2}\)-\(\frac{1}{3^2}\)-\(\frac{1}{4^2}\)-...-\(\frac{1}{2016^2}\)>\(\frac{1}{2016}\)
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2002^2}\)
Chứng minh rằng A<\(\frac{1505}{2008}\)
1.Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^3.4^2}+...+\frac{19}{9^2.10^2}< 1\)
2.Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Làm nhanh giúp mình nhé mọi người !!!
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\) < \(\frac{3}{4}\)
a ) Tính B = \(\frac{1}{2^{2016}}-\left(\frac{1}{2^{2015}}+\frac{1}{2^{2014}}+...+\frac{1}{2^1}+\frac{1}{2^0}\right)\)
b ) Tìm x biết : | x + 1 | + | x + 4 | = 3x
bài tập:
cho B=\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2014}+\left(\frac{1}{2}\right)^{2015}\) . chứng minh rằng: B<1
giúp mình với nha........