\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
<=> \(x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
<=> \(\left(x^2+4\right)\left(x^2-1\right)=0\)
<=> \(\left(x^2+4\right)\left(x-1\right)\left(x+1\right)=0\)
<=> x = 1 và x = - 1 vì x2 + 4 luôn luôn lớn hơn 0.
\(x^2\left(x^2+4\right)-x^2-4=0\\ < =>x^2\left(x^2+4\right)-\left(x^2+4\right)=0\\ < =>\left(x^2+4\right)\left(x^2-1\right)=0\)
\(Vì :x^2\ge 0=>x^2+4\ge4>0\)
\(=>x^2-1=0\\ < =>x^2=1\\ < =>x=\pm1\)
\(Vậy :\) \(S=\left\{\pm1\right\}\)