\(\Delta'=\left(m-1\right)^2\ge0;\forall m\)
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4m^2-4m+2=\left(2m-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi \(m=\frac{1}{2}\)
Khi đó: \(x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)