Đặt \(x^2=t\ge0\Rightarrow t^2-2mt+5m-4=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-5m+4>0\\t_1+t_2=2m>0\\t_1t_2=5m-4>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>4\\\frac{4}{5}< m< 1\end{matrix}\right.\)
Gọi \(t_1;t_2\) là 2 nghiệm của (1) sao cho \(t_1< t_2\Rightarrow\left\{{}\begin{matrix}x_1=-\sqrt{t_2}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_1}\\x_4=\sqrt{t_2}\end{matrix}\right.\)
\(T=2\left(t_1^2+t_2^2\right)-6t_1t_2=2\left(t_1+t_2\right)^2-10t_1t_2\)
\(=2\left(2m\right)^2-10\left(5m-4\right)=8m^2-50m+40\)
Bạn coi lại đề, biểu thức này ko tồn tại min