\(\Delta'=m^2-2m+1=\left(m-1\right)^2\ge0\)
Vì \(\Delta'\ge0\) nên phương trình luôn có hai nghiệm với mọi giá trị của m
\(\Delta'=m^2-2m+1=\left(m-1\right)^2\ge0\)
Vì \(\Delta'\ge0\) nên phương trình luôn có hai nghiệm với mọi giá trị của m
1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là
a,0 b, \(\dfrac{-1}{2}\) c, 2 d, 4
2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x0 + y0 bằng
a,3 b,1 c,0 d, 2
3. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng
a,\(\dfrac{4}{5}\) b,\(\dfrac{3}{5}\) c,\(\dfrac{3}{4}\) d \(\dfrac{4}{3}\)
4. trên đg tròn (O;R) lấy 2 điểm A,B sao cho số đo cung AB lớn hơn bằng \(270^o\) độ dài dây cung là
a, R\(\sqrt{2}\) b, R\(\sqrt{3}\) c, R d, 2R\(\sqrt{2}\)
5. cho đg tròn (O;3cm) 2 điểm A,B thuộc đường tròn và sđ \(\stackrel\frown{AB}\) = \(60^o\) độ dài cung nhỏ AB là
a, \(\dfrac{\pi}{2}\) cm b, \(3\pi\) c, \(\dfrac{\pi}{3}cm\) d, \(\pi\)cm
6. giá trị của m để 2 đg thẳng (d): y=xm+6 và (d'): y=3x+2-m song song là
a, m=-2 b, m=-3 c, m=-4 d, m=1
7. cho hàm số bậc nhất y=ax+b có hệ số góc bằng -1 và tung độ góc bằng 3 giá trị của biểu thức a2+b bằng
a,2 b, 4 c, 9 d, 5
8. cho hệ pt \(\left\{{}\begin{matrix}3x+my=1\\nx+y=3\end{matrix}\right.\) với m,n là tham số biết rằng (x;y)=(1,1) là 1 nghiệm của hệ đã cho giá trị của m+n bằng
a, -1 b, 3 c, 1 d, 2
9.cho Parabol (P) có pt \(y=\dfrac{x^2}{4}\) vào đường thẳng (d): y=-2x-4
a, (P) cắt (d) tại 2 điểm phân biệt
b, (P) cắt (d) tại điểm duy nhất (-2;2)
c, (P) ko cắt (d)
d, (P) tiếp xúc với (d), tiếp điểm là (-4;4)
10. tất cả các giá trị của x để \(\sqrt{-2x+6}\) có nghĩa là
a, x≥3 b, x>3 c, x≤3 d, x<-3
Cho phương trình x2+mx+2m-4=0 a Chứng tỏ phương trình trên luôn có nghiệm với mọi giá trị m b Tính tổng và tích của 2 nghiệm theo m c Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn x1^2+x2^2=4
Cho phương trình ẩn x: x2 – 2mx - 1 = 0 (1)
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2.
b) Tìm các giá trị của m để: x12 + x22 – x1x2 = 7
Cho pt : x2 - 2(m+1)x +2m =0 (1)
a, chứng minh rằng Pt (1) luôn luôn có hai nghiệm phân biệt với mọi giá trị của m.
b, Tìm m để Pt (1) có hai nghiệm đối nhau.
Cho phương trìn x^2-(3m-1)x+2m^2+2m=0 (1)
a) giải phương trình với m = 1
b) tìm giá trị của m để pt (1) có 2 nghiệm phân biệt x1, x2 sao cho \(\left|x_1-x^{ }_2\right|=2\)
Cho PT:x^2-2(m-1)x+2m-5=0
a)CMR: phương trình luôn có 2 nghiệm phân biệt x1,x2 với mọi m
b)Tìm giá trị m để (x1^2-2mx1+2m-1)(x2^2-2mx2+2m-1) <0
Cho phương trình x2 - 2mx - 2m - 5 = 0( m là tham số )
a) giải phương trình với m = -1
b) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi m
c) Tìm m để |x1 - x2| đạt giá trị nhỏ nhất ( x1,x2 là 2 nghiệm của phương trình )
Cho phương trình bậc 2: (m - 1)x2 - 2mx + m + 1 = 0.
a) Tìm m, biết phương trình có nghiệm x = 0.
b) Xác định giá trị của m để phương trình có tích 2 nghiệm bằng 5, từ đó hãy tính tổng 2 nghiệm của phương trình.
Cho pt x2 -(m-2)x-m2 +3m-4=0 (*)
a, Giải (*) khi m =0
b) CM pt có hai nghiệm trái dấu vs mọi m
c, Tìm m để pt (*) có nghiệm x1 x2 thoả mãn (x1+2x2)(x2+2x1)