\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
\(=\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}+\frac{1}{\left(x+z\right)+\left(y+z\right)}\)
\(\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)=1\)
\("="\Leftrightarrow x=y=z=\frac{3}{4}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\)
\(\Rightarrow\frac{1}{16}.\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{2x+y+z}\)
CMTT: \(\frac{1}{x+2y+z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\), \(\frac{1}{x+y+2z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)
\(\Rightarrow\Sigma\frac{1}{2x+y+z}\le\frac{1}{16}.4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)=\frac{1}{16}.16=1\)
\(''=''\Leftrightarrow x=y=z=\frac{3}{4}\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\). Dấu "=" xảy ra \(\Leftrightarrow x=y\)
\(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\). Dấu "=" xảy ra \(\Leftrightarrow y=z\)
\(\frac{1}{z}+\frac{1}{x}\ge\frac{4}{x+z}\). Dấu "=" xảy ra \(\Leftrightarrow z=x\)
Do đó : \(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(\Rightarrow\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le2\)
+ \(\frac{1}{x+y}+\frac{1}{y+z}\ge\frac{4}{x+2y+z}\).Dấu "=" xảy ra\(\Leftrightarrow x=z\)
\(\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{4}{x+y+2z}\). Dấu "=" xảy ra \(\Leftrightarrow x=y\)
\(\frac{1}{x+y}+\frac{1}{z+x}\ge\frac{4}{2x+y+z}\). Dấu "=" xảy ra \(\Leftrightarrow y=z\)
Do đó : \(2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge4\left(\frac{1}{x+2y+z}+\frac{1}{x+y+2z}+\frac{1}{2x+y+z}\right)\)
=> đpcm
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\)